PHASE I AND LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT 160 North Main Street Milpitas, California

City of Milpitas Milpitas, California

18 August 2004 Project No. 3918.01

Environmental and Geotechnical Consultants

18 August 2004 Project 3918.01

Mr. Mark Rogge City of Milpitas 455 East Calaveras Boulevard Milpitas, California 95035

Subject:

Phase I and Limited Phase II Environmental Site Assessment

160 North Main Street Milpitas, California

Dear Mr. Rogge:

We are pleased to submit our report titled "Phase I and Limited Phase II Environmental Site Assessment" for the 160 North Main Street property.

We appreciate the opportunity to be of service to you on this project. If you have any questions or require additional information, please call.

Sincerely yours,

TREADWELL & ROLLO, INC.

Peter J. Cusack Senior Scientist Phillip G. Smith, REA II

Principal

39180101.PJC

Enclosure

cc:

Mr. Tom Yousch – Swinerton Management & Consulting

PHASE I AND LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT 160 North Main Street Milpitas, California

City of Milpitas Milpitas, California

18 August 2004 Project No. 3918.01

TABLE OF CONTENTS

1.0	INTR	ODUCTION AND SCOPE	1
2.0	SITE	DESCRIPTION	2
3.0	GEOI	LOGIC AND HYDROGEOLOGIC SETTING	2
4.0	SITE	USAGE HISTORY	3
5.0	REVI 5.1 5.2	EW OF PUBLIC RECORDS 116 and 160 North Main Street - Site Nearby Facilities 5.2.1 130 Winsor Street - Milpitas Transmission (formerly Michael's Auto Repair). 5.2.2 10 N. Main Street - Main Street Gas (formerly an Ultramar-Beacon Station).	5 7
6.0	SITE:	RECONNAISSANCE Nearby Area	9 10
7.0	LIMI7 7.1 7.2	TED PHASE II ENVIRONMENTAL SITE INVESTIGATIONSubsurface Soil and Groundwater InvestigationAnalytical Testing	10
8.0	LABC 8.1 8.2	DRATORY TEST RESULTS AND EVALUATION Soil Analytical Results Groundwater Analytical Results	12
8.0	SUM	MARY AND CONCLUSIONS	13
9.0 REFE	LIMIT	TATIONS	15
TABL	ES		
FIGUI	RES	•	
APPE:	NDIX A	A – Aerial Photographs	
APPE:	NDIX I	B – EDR Environmental Data Resources, Inc. Report	
APPE	NDIX (C – Exploratory Boring Logs	
APPE	NDIX I	O – McCampbell Analytical Laboratory Reports	

PHASE I AND LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT 160 NORTH MAIN STREET Milpitas, California

1.0 INTRODUCTION AND SCOPE

This report presents the results of our Phase I and Limited Phase II Environmental Site Assessment (ESA) for the proposed Milpitas Public Library located at 160 North Main Street (Site) in Milpitas, California (Figure 1). Our work was performed for Mr. Mark Rogge with the City of Milpitas.

The scope of our work consisted of:

- Reviewing readily available documents and maps regarding local geologic and hydrogeologic conditions;
- Reviewing readily available historical aerial photographs, historical maps (Sanborn Fire Insurance Maps), and United States Geological Survey (USGS) historical topographic maps for the Site;
- Performing a reconnaissance survey of the Site and a survey of the area within a 1/4-mile radius of the Site, as accessible, to make visual observations of existing Site conditions, activities, types of land use, and businesses within the search area;
- Reviewing local, state, and federal records provided by Environmental Data Resources,
 Inc. (EDR) of Southport, Connecticut, for government databases pertinent to Phase I
 ESAs;
- Conducting inquires by telephone, visit, and/or written correspondence to the City of
 Milpitas Fire Department (MFD) and Santa Clara Valley Water District (SCVWD) as
 appropriate, regarding environmental permits, environmental violations, incidents and/or
 status of enforcement actions at the Site;

- Drilling thirteen exploratory borings;
- Analyzing selected soil samples for chemical constituents; and
- Preparing this report.

2.0 SITE DESCRIPTION

The Site is located in a mixed commercial and residential area of Milpitas, California. The site is at the southeastern corner of the intersection of North Main Street and Weller Lane, as indicated on Figure 1. Currently, the site is occupied by a one-story Milpitas Senior Center and by vacant lots to the north and south of the Center.

We understand the proposed Milpitas library project will consist of incorporating the existing Senior Center (which is also called the historic Milpitas Grammar School building) as part of a new two-story, 60,000-square-foot, public library structure. A proposed 2-story parking garage to the east and south of the library is not part of this ESA. The conceptual layout of the proposed library and garage project are shown on the Site Plan (Figure 2). The proposed project will also include the installation of new underground utilities, construction of new asphalt-paved parking areas and driveways, and construction of concrete walkways and flatwork.

The Site is at an elevation of approximately 15 feet above Mean Sea Level (MSL) and slopes downward in a northwesterly direction. A topographic map of the Site vicinity is presented on Figure 3.

3.0 GEOLOGIC AND HYDROGEOLOGIC SETTING

The results of our field investigation indicate the site is blanketed by up to 10 feet of stiff clay which is underlain by medium to very stiff clay. This clay is underlain by saturated clayey to silty sand, gravel, and sand/gravel mixtures with approximate depths ranging from 13 to 21 feet below ground surface (bgs). The upper half of this layer is loose to medium dense while the

deeper portion is medium dense to dense. Soil types at depths greater than 21 feet bgs consist of layers of stiff to hard clay and silt with varying amounts of sand and gravel. Occasional isolated layers of loose to dense sand, silty sand, and clayey sand are present within the silt and clay layers.

During our subsurface investigations at the site, the groundwater level was measured in our exploratory borings ranging from 6.5 to 9.7 feet below the ground surface (bgs). Regional groundwater flow direction in the Site vicinity is towards the northwest.

4.0 SITE USAGE HISTORY

The history of the Site and vicinity was reviewed to identify activities at the Site and adjacent facilities that may have released hazardous materials into the subsurface. To accomplish this objective, we reviewed readily available environmental and geotechnical reports, aerial photographs for the years 1939, 1956, 1965, 1982, and 1993, and historical topographic maps for the years 1958, 1961, 1968, 1973, and 1980. No historical Sanborn Map coverage was available for the Site. Copies of aerial photographs for the years 1939, 1965, 1982, and 1993 are included in Appendix A.

The 1939 aerial photograph shows the Site occupied by the historic Milpitas Elementary School. The properties to the north and south are vacant with Main Street present to the west and railroad tracks to the east. The surrounding land use mainly appears to be used for agricultural purposes with residential properties present farther to the south. A copy of the 1939 aerial photograph is presented in Appendix A as Figure A-1.

The 1956 and 1965 aerial photographs show the Site as unchanged from the 1939 aerial photograph. Mall rectangular warehouse type buildings are present to the east of the Site, the land use to the north, south, and west of the Site appears unchanged from the 1939 aerial photograph. A copy of the 1965 aerial photograph is presented in Appendix A as Figure A-2.

The 1982 and 1993 aerial photographs show the Site as unchanged from the previous aerial photographs. The surrounding areas have changed with new large warehouse building to the east across the railroad tracks, and residential properties farther north and west of the Site. The area to the south appears unchanged. Copies of the 1982 and 1993 aerial photographs are presented in Appendix A as Figures A-3 and A-4.

The historical topographical maps show the Site and surrounding areas as they were presented on the aerial photographs. No aerial photographs were available prior to 1939.

5.0 REVIEW OF PUBLIC RECORDS

A government records report for the Site was prepared by EDR and is attached as Appendix B. This report contains the results of a search of several government database sources pertinent to Phase I ESAs which identify potential sources of hazardous substances that may affect the soil and/or groundwater quality at the Site. These regulatory lists include locations where an unauthorized release is a potential hazard, where an unauthorized release is suspected to have occurred, and where an unauthorized release has been confirmed. The regulatory lists also include locations where hazardous materials are generated and/or stored, whether or not there has been an unauthorized release.

The search included businesses or properties on these government lists within a one-mile radius of the Site. The EDR report provides a comprehensive listing of agency records. There may be multiple entries for one site location on a single agency list, or a site may be identified on more than one list. Many sites are identified on the various agency lists because of previous problems or the potential for future problems. Also, sites identified may have been categorized by the listing regulatory agency as needing no further action, closed, or low priority. These sites would not likely have affected the soil or groundwater at the site. Therefore, the regulatory files (if any) on such sites were not reviewed as part of this scope of work.

On the basis of the information provided in the EDR report, Treadwell &Rollo reviewed regulatory agency case files for the sites with the potential to detrimentally affect the environmental conditions at the Site. Our findings are summarized below.

5.1 116 and 160 North Main Street - Site

The 116 and 160 North Main Street properties were listed on regulatory agency databases searched by EDR and records were found in Santa Clara Valley Water District (SCVWD) and Milpitas Fire Prevention (MFP) files relating to the Site. The Site was listed in the following databases: CA FID UST¹, LUST², HIST UST³, ERNS⁴, CHMIRS⁵, Cortese⁶, and HAZNET⁷. Based on the proximity of these properties and the locations of the former underground storage tanks (USTs), all soil and groundwater investigations were as the properties were one site.

In August 1990, a 252-galon gasoline tank was removed from the 116 North Main Street and 550-gallon waste oil tank was removed from the 160 North Main Street. Following the removal

¹ **CA FID UST:** The Facility Inventory Database contains active and inactive underground storage tank locations. The source is the State Water Resource Control Board.

LUST: The Leaking Underground Storage Tank Incident Reports contain an inventory of reported leaking underground storage tank incidents. The data come from the State Water Resources Control Board Leaking Underground Storage Tank Information System.

³ **HIST UST:** Historical UST Registered Database.

ERNS: Database contains information on notifications of oil and hazardous substance releases that have occurred throughout the United States.

⁵ CHMIRS: California Hazardous Material Incident Reporting System.

CORTESE: This database identifies public drinking water wells with detectable levels of contamination, hazardous substance sites selected for remedial action, sites with known toxic material identified through the abandoned site assessment program, sites with USTs having a reportable release and all solid waste disposal facilities from which there is known migration. The source is the California Environmental Protection Agency/Office of Emergency Information.

HAZNET: The data is extracted from the copies of hazardous waste manifests received each year by the DTSC. The annual volume of manifests is typically 700,000-1,000,000 annually, representing approximately 350,000-500,000 shipments. Data from non-California manifests & continuation sheets are not included at the present time. Data are from the manifests submitted without correction, and therefore many contain some invalid values for data elements such as generator ID, TSD ID, waste category, & disposal method. The source is the Department of Toxic Substance Control is the agency.

of the USTs, petroleum hydrocarbon contamination was detected in the soil and groundwater beneath the Site.

In 1998, additional petroleum hydrocarbon contaminated soil was excavated and removed from the former UST locations. Approximately 510 tons of contaminated soil was transported and removed from the Site to both a Class II and a Class III regulated landfill. Soil sampling after the over-excavation was performed detected low levels of petroleum hydrocarbons, mostly at the vadose zone. Prior to backfilling the excavations, oxygen releasing compound (ORC) was applied to the saturated soil at the bottom of the excavation in order to enhance biodegradation of remaining subsurface petroleum hydrocarbon contamination.

In January 1991, a groundwater monitoring program was initiated with the installation and groundwater sampling of five groundwater monitoring wells (MW-1 through MW-5). In April 1997, an additional groundwater monitoring well was installed and added to the quarterly sampling program. Quarterly groundwater monitoring was performed until September of 2000.

On 11 April 2001, based on the review of the analytical results for the soil and groundwater at the 116 North Main Street property, the SCVWD issued a "Fuel Leak Site Case Closure" letter. The letter stated that residual contamination exists at the site but that concentration levels are below regulatory concern.

On 8 November 2001, based on the review of the analytical results for the soil and groundwater at the 160 North Main Street property, the SCVWD issued a "Fuel Leak Site Case Closure" letter. The SCVWD case closure summary stated that no further corrective action was necessary at the time due to the fact that the majority of the contaminated soil had been excavated and disposed of off site, and that the residual groundwater contamination remained localized within the immediate vicinity of the former UST. It was anticipated that natural attenuation processed would continue to work by reducing the remaining subsurface contamination. The SCVWD letter included the following statement:

"Residual petroleum hydrocarbon contamination exists at the Site. Since the residual contamination could be exposed during site development activities, grading, or excavation, any such disturbance of the contamination shall be assessed and appropriate action taken so that there is no significant impact to human health, safety, or the environment."

Based on the above information, the petroleum hydrocarbon contamination in the soil and groundwater is a recognized environmental condition. Since petroleum hydrocarbons are present, a special soil handling and disposal requirements will be required during any construction activities performed at the Site.

5.2 Nearby Facilities

Public files were reviewed for sites in close proximity to and in the assumed upgradient or cross gradient direction of groundwater flow to the Site to evaluate the potential for these sites to affect the conditions at the subject property. Near-surface groundwater flow would be expected to serve as the chief transport mechanism for the migration of off-site chemical impacts to the on-site environment. The potential for these sites to affect the subject property is largely based on their relative location and the regional groundwater flow direction which has been identified to be in the northwesterly direction. Our summary of the reviews is presented below.

5.2.1 130 Winsor Street – Milpitas Transmission (formerly Michael's Auto Repair)

This facility, approximately 210 feet east and up gradient from the Site, is listed as a LUST, CA FID UST, HIST UST, and HAZNET Site. According to files reviewed at the SCVWD, two USTs (one 300-gallon waste oil and one 1,000-gallon leaded gasoline) were removed from the site on 25 March 1994. The gasoline UST was installed approximately 1950. The date of installation of the waste oil tank was not reported. Reportedly, both tanks had not been in service for several years. A visual inspection performed during removal activities did not detect any holes or leaks in either of the tanks.

Soil samples collected from the UST excavations detected low levels of petroleum hydrocarbons. Approximately 20 cubic yards of soil was over excavated from the tank excavations and disposed at a regulated landfill.

Soil and groundwater investigations conducted in 1996 and 1997 detected elevated concentrations of kerosene range petroleum hydrocarbons and hydraulic oil, minor concentrations of motor oil, BTEX, TPH as diesel and SVOCs have also been detected at the site. Reportedly, additional subsurface investigations and groundwater monitoring are ongoing at the site. No other information was available at the time of our reviews.

Based on the distance of this property to the Site and the northwesterly groundwater gradient, the potential of this release to affect the environmental conditions at the Site are moderate.

5.2.2 10 N. Main Street – Main Street Gas (formerly an Ultramar-Beacon Station)

This facility, located approximately 375 feet south and cross gradient from the Site, is listed on the Cortese, HIST UST, CA FID UST, and LUST databases. This facility has operated as a service station since 1983. In 1993, four gasoline USTs (one 7,500-gallon, two 5,000-gallon, and one 2,000-gallon) were removed from the site. At the time of removal, holes were observed in the 7,500-gallon and 5,000-gallon USTS.

Currently eleven groundwater monitoring (MW-4 through MW-14) and four recovery (R-1 through RW-3 and S-1) wells are present at the site and quarterly groundwater monitoring and sampling has been performed at the site since 1987.

In 1997, the SCVWD approved a corrective action plan (CAP) by Horizon Environmental, Inc. (Horizon) that included the installation of a bioventing system and a submerged oxygen curtain for the purpose of reducing petroleum hydrocarbon concentrations and increasing biodegradation at the site. On 28 February 2002, the SCVWD approved a second CAP by Horizon to conduct monthly dual-phase extraction (DPE) events from the bioventing system at the site. The most

recent information in the regulatory files stated that the start-up of the bioventing system and completed installation of the oxygen curtain were scheduled for June 2004. No other information was available during our file review.

Based on the distance and groundwater gradient direction, the potential of this property to affect the environmental conditions at the Site is considered minimal.

6.0 SITE RECONNAISSANCE

A reconnaissance of the site and nearby area was conducted in May and August 2004. The purpose of the reconnaissance was to look for visual evidence of past or present use, storage or releases of petroleum products and/or hazardous materials that could potentially affect the soil and/or groundwater quality at the site. At the time of the site reconnaissance, the inside of the building could not be accessed. Site reconnaissance activities were limited to the outside of the building, and the surrounding properties. Following is a summary of conditions observed during the site reconnaissance.

As previously discussed, the site is occupied by a one-story vacant schoolhouse building with a single basement level. The building was constructed in 1915 and is constructed of brick with a stucco finish and has a concrete slab on-grade floor.

No visual evidence of the following features were observed during the site reconnaissance: USTs, fill material; ponds; previous buildings; stressed vegetation or stained soil; or mining, oil, and gas exploration, production, or distribution. No evidence of past or present dry cleaning operations were observed at the site during the site reconnaissance walk.

During the site reconnaissance walk, adjacent properties were observed from public sidewalks. No gasoline stations were observed in the near, upgradient position. Properties within close proximity to the site included vacant lots, a church, a towing business, and a transmission shop.

At the time of our inspection, the buildings, parking lot and concrete sidewalks appeared well maintained with no evidence of any significant staining, spillage, and/or ponded liquids or uncontained solids.

6.1 Nearby Area

The subject site is bounded to the west by North Main Street, beyond which are a vacant dirt lot, a residential type building, and a church. To the north is Weller Lane, beyond which is a vacant paved lot. The site is abutted to the east by Winsor Street, beyond which is a commercial building with a towing company and a transmission repair shop. East of this building are railroad tracks. To the south of the Site, a vacant paved lot and building are present. This lot is currently used by the City of Milpitas for vehicle storage. No apparent signs of chemical releases or leaks were noted at nearby facilities.

7.0 LIMITED PHASE II ENVIRONMENTAL SITE INVESTIGATION

Our work included collecting soil and groundwater grab samples from thirteen environmental test borings, chemical testing of selected samples, and evaluating the results. The objective of the site characterization was to assess the presence of petroleum hydrocarbon and heavy metal contamination of soil and groundwater at the Site. Concentrations of chemical compounds detected in the soil and groundwater samples were compared to state and federal criteria for hazardous waste and disposal options. On the basis of this comparison, we developed preliminary recommendations regarding the presence of hazardous materials at the Site and preliminary soil handling procedures.

7.1 Subsurface Soil and Groundwater Investigation

On 14 May 2004, thirteen exploratory borings (EB-1 through EB-13) were advanced at the Site to depths ranging from 4 to 16 feet bgs. The borings were completed by Gregg Drilling of Martinez, California utilizing a truck mounted direct-push drill rig equipped with 2-inch diameter core barrels. Up to three soil samples were collected from each boring at depths

ranging from 1 to 5 feet bgs. The depths and locations of the borings were selected based on the proposed maximum depth and area of excavation planned to occur during future site redevelopment activities. The approximate locations of the exploratory borings are shown on Figure 2 and the exploratory boring logs are presented in Appendix C as Figures C-1 through 13.

Soil samples were collected using a 4-foot long continuous core barrel fitted with clear acetate liners. At each sampling interval, a 6-inch section of the continuous core sample was cut out of the four foot liner and retained for analysis. The ends of each sample were covered with Teflon sheets and tight fitting plastic end caps. All soil sampling equipment was thoroughly cleaned with a detergent solution and rinsed with distilled water before each sampling event. All samples were labeled and placed in an ice-cooled chest and delivered to McCampbell Analytical, Inc., (McCampbell) a California Department of Health Services certified analytical laboratory in Pacheco, California under chain-of-custody procedures.

Five exploratory borings (EB-2, EB-6, EB-8, EB-10, and EB-11) were advanced to approximately 16 feet bgs for the purpose of collecting groundwater grab samples. At each boring, a temporary 1-inch diameter well was constructed by placing a 10-foot screened section (0.010-inch slot) polyvinyl chloride (PVC) casing into the open borehole. One 1-inch diameter 10-foot section of solid PVC casing was attached to the screen section, and the PVC was lowered to the bottom of the boring. Once the casing was in place, a stainless steel ¾-inch bailer was used to collect a groundwater sample which was then decanted into laboratory-prepared containers. The sample containers were sealed, labeled, and placed in an ice-cooled chest for delivery to McCampbell laboratory under chain-of-custody procedures.

Under the supervision of an inspector from the Milpitas Environmental Health Department, all borings were properly sealed with cement grout. All cuttings and rinsate water generated during drilling were placed in sealed and labeled 55-gallon drums and stored on site.

7.2 Analytical Testing

With current foundation plans for the proposed new library including shallow footings and slab on grade construction, soil samples were collected from the near surface soil and were analyzed for the presence of petroleum hydrocarbons as gasoline (TPH-g), diesel (TPH-d) and motor oil (TPH-mo) by EPA Method 8015M, total oil and grease by EPA Method 5520, volatile organic compounds (VOCs) by EPA Method 8260, semi-volatile organic compounds (SVOCs) by EPA Method 8270, and CAM 17 metals by EPA Methods 6010/7000 series.

8.0 LABORATORY TEST RESULTS AND EVALUATION

A summary of the laboratory analytical results is presented on Tables 1 through 4. Copies of the laboratory analytical reports are presented in Appendix D. The results of the laboratory analysis are discussed in the remaining sections of this report.

8.1 Soil Analytical Results

No concentrations of total petroleum hydrocarbons (TPH) as gasoline, benzene, toluene, ethylbenzene, xylenes, VOCs, or SVOCs were detected at or above the method reporting limits. TPH as diesel was detected in soil sample EB-1 at a depth of 1.5 feet bgs at a concentration of 10 milligrams per kilograms (mg/kg). TPH as motor oil was detected in nine of the 23 soil samples analyzed at concentrations ranging from 7.98 mg/kg to 464 mg/kg. Oil and grease (O&G) was detected in six of the 12 soil samples analyzed at concentrations ranging from 50 mg/kg to 3,400 mg/kg.

Total lead was detected in each sample at concentrations ranging from 4.3 mg/kg to 510 mg/kg. The remaining metal concentrations appeared to be within normal⁸ background ranges found in the western United States. Soil analytical results from this sampling event are presented in Tables 1 and 2.

[&]quot;U.S.G.S. Professional Paper 1270, Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States," 1984.

8.2 Groundwater Analytical Results

The analyzed groundwater samples did not contain detectable concentrations of diesel, motor oil of semi volatile organic compounds (SVOCs). Gasoline, benzene, toluene, ethylbenzene, xylenes were detected in samples collected from boring EB-10 at concentrations of 228 micrograms per liter (µg/L), 2.1 µg/l, 2.9 µg/L, 13 µg/L, and 13 µg/L, respectively. TPH as oil and grease was detected at a concentration of 100 µg/L from the sample collected from boring EB-8. The metal concentrations detected were within generally accepted background levels. Groundwater analytical results are summarized in Tables 3 and 4. In general, groundwater beneath the site near borings EB-2, EB-6, EB-8, EB-10, and EB-11 does not appear to be significantly impacted by petroleum hydrocarbons in levels that would require special handling.

8.0 SUMMARY AND CONCLUSIONS

This Phase I and Limited Phase II Environmental Site Assessment has been performed by Treadwell & Rollo for Mr. Mark Rogge with the City of Milpitas, for 160 Main Street, in Milpitas, California. The 160 Main Street property is currently occupied by a one-story vacant building with a single basement level. The building was constructed in 1915 and is constructed of brick with a stucco finish.

The Site is bounded by North Main Street to the west, Weller Lane and 116 Main Street to the north and south, and Winsor Street and railroad tracks to the east (Figure 2). The Site is at an elevation of approximately 15 feet above MSL and slopes downward in a northwesterly direction (Figure 3). The Site is underlain by up to 21 feet of medium to very stiff clay, below which are layers of clay with sand and gravel and sand, silty sand, and clayey sand. Groundwater was encountered at depths ranging from approximately 6.5 to 10 feet bgs and flows in the northwesterly direction.

There are several facilities within the study area that appear on various agencies lists. One facility

The subject Site was referenced on regulatory files reviewed, a 550-gallon waste oil and a 252-gallon gasoline UST were removed from the Site and petroleum hydrocarbon contamination was detected in soil and groundwater at the Site. Soil and groundwater subsurface investigation have been performed at the Site from 1991 until 2000 and petroleum hydrocarbons have been detected in the soil and groundwater at the Site.

In 2001, SCVWD issued case closures for the former USTs stating that no further corrective action was necessary. The SCVWD case closure also stated that residual petroleum hydrocarbon contamination exists at the Site and any disturbance of the contamination shall be assessed and appropriate action taken so that there is no significant impact to human health, safety, or the environment.

There are several facilities within the study area that appear on the regulatory agency lists (Appendix B). One facility may be affecting the environmental conditions at the Site. At the 130 Windsor Street property, petroleum hydrocarbon contamination has been released to the groundwater and maybe migrating onto the subject property.

Based on our review of regulatory files, the Site history, and Site reconnaissance, this assessment revealed evidence of two recognized adverse environmental conditions in connection with the subject properties, which are described below.

- With the presence of petroleum hydrocarbon contaminated soil and groundwater underlying the Site, a soil management plan (SMP) and a Health and Safety (H&S) plan (prepared by others for site contractors) will be required prior to construction. The SMP will include a soil handling plan which segregates the petroleum hydrocarbon contaminated material. The H&S plan will outline proper soil handling procedures and health and safety requirements to minimize worker and public exposure to petroleum hydrocarbons during construction.
- Also, groundwater beneath the Site may be contaminated with petroleum hydrocarbons from the 130 Windsor Street property.

39180101.PJC 18 August 2004

9.0 LIMITATIONS

Activities undertaken as part of this investigation were conducted to assess the presence of recognized releases of hazardous materials and petroleum hydrocarbons at the Site. The conclusions presented in this report are professional opinions based on the specific activities conducted.

Treadwell & Rollo, Inc. makes no guarantees or warranties with respect to the accuracy or completeness of this information. Opinions and recommendations presented herein apply to Site conditions existing at the time of our assessment, and cannot necessarily be taken to apply to Site changes or conditions of which we are not aware and have not had the opportunity to evaluate.

The assessment did not include testing for the presence of lead paint, asbestos, PCBs in transformers or other electrical equipment, or naturally occurring environmental hazards (e.g., radon). The assessment did not address non-chemical hazards, such as the potential for seismic hazards at the Site.

REFERENCES

Aerial Photographs for the years 1946, 1956, 1965, 1982, and 1993.

Historical Topographic maps for the years 1932, 1948, 1956, and 1993.

TABLES

Table 1
Soil Analytical Results for Petroleum Hydrocarbons
160 North Main Street
Milpitas, California

Sample ID	Sample Date	Sample Depth	ТРНg	ТРНа	ТРНто	ТРНод	Benzene	Toluene	Ethylbenzene	Xylenes	VOCs	SVOCs
	Date	(fbg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
EB-1 EB-1	5/14/2004 5/14/2004	1.5 3.0	<0.100 <0.100	10 <2.00	390 <4.00	 <50	 <0.01	 <0.01	 <0.01	 <0.01	ND 	ND
EB-2 EB-2	5/14/2004 5/14/2004	1.5 3.0	<0.100	 <2.00	 <4.00	 <50	<0.01 	<0.01 	<0.01 	<0.01		
EB-3 EB-3 EB-3	5/14/2004 5/14/2004 5/14/2004	1.5 3.0 5.0	 <0.100	<2.00 <2.00 	<4.00 <4.00	 160	 <0.01	 <0.01	 <0.01	 <0.01	 	ND
EB-4 EB-4 EB-4	5/14/2004 5/14/2004 5/14/2004	1.5 3.0 5.0	<0.100	<9.00 <2.00 	119 <4.00 	 <50	 	 	 	 	ND 	 ND
EB-5 EB-5 EB-5	5/14/2004 5/14/2004 5/14/2004	1.5 3.0 5.0	<0.100 	<2.00 <2.00 	22.8 <4.00	 <50	<0.01 	<0.01 	<0.01 	<0.01 	 	ND
EB-6 EB-6	5/14/2004 5/14/2004	1.5 4.5	<0.100 <0.100	<21 <2.00	204 <4.00	2,200 	<0.01 	<0.01 	<0.01	<0.01	ND 	
EB-7 EB-7 EB-7	5/14/2004 5/14/2004 5/14/2004	1.5 3.0 5.0	<0.100 <0.100 <0.100	<6.00 <12	162 380	 3,400	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	 <0.01 <0.01	ND	nd
EB-8 EB-8 EB-8	5/14/2004 5/14/2004 5/14/2004	1.5 3.0 5.0	<0.100 	<2.00 <2.00	<4.00 24.3 	 100	 ••		 	 	ND 	
EB-9 EB-9 EB-9	5/14/2004 5/14/2004 5/14/2004	1.5 3.0 5.0	<0.100 	<20.0 <2.00 	464 <4.00 	 <50	<0.01 	<0.01 	<0.01 	<0.01 	 ND 	 ND

Table 1 Soil Analytical Results for Petroleum Hydrocarbons 160 North Main Street Milpitas, California

Sample ID	Sample Date	Sample Depth (fbg)	TPHg (mg/kg)	TPHd (mg/kg)	TPHmo (mg/kg)	TPHog (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	VOCs (mg/kg)	SVOCs (mg/kg)
EB-10 EB-10	5/14/2004 5/14/2004	1.5 3.0	<0.100 <0.100	<2.00 <2.00	<4.00 <4.00	<50	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	 	 ND
EB-11 EB-11	5/14/2004 5/14/2004	1.5 3.0	<0.100	 <2.00	 <4.00	 <50	<0.01 	<0.01 	<0.01	<0.01		ND
EB-12 EB-12	5/14/2004 5/14/2004	1.5 3.0	 <0.100	<15.0 <2.00	246 7.98	50 			 		 ND	
EB-13 EB-13	5/14/2004 5/14/2004	1.5 3.0	<0.100 <0.100	<2.00 	<4.00 	<50 <50	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01		

Notes:

TPHg = Total Petroleum Hydrocarbons as Gasoline, EPA Method 8015M

TPHd = Total Petroleum Hydrocarbons as Diesel Range (C10-C23), EPA Method 8015M

TPHmo = Total Petroleum Hydrocarbons as Motor Oil, EPA Method 8015M

TPHog = Total Petroleum Hydrocarbons as Oil and Grease, SM 5520M

VOCs = Volatile Organic Compounds, EPA 8260B

SVOCs = Semi volatile organic compounds, EPA Method 8270

mg/kg = milligrams per kilograms

fbg = feet below grade

-- = Not Analyzed

<0.100 = Analyte was not detected above the laboratory reporting limit (0.100 mg/kg)

ND = Not detected at or above the laboratory reporting limit

Table 2 Soil Analytical Results for Total Metals 160 North Main Street Milpitas, California

C1-	Date	Sample	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Sample ID	Collected	Depth	·		l <u></u>														
		(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	SUAPPOA	1.5		-1.6	110	-0.74	2.0	46		34	190	0.10	<0.22	64	<0.71	<0.26	<2.4	37	94
EB-1	5/14/2004	1.5	<1.3	<1.6	110	<0.76		46	8.8				1						
EB-1	5/14/2004	3.0							••	-	8.2			-	-		-	-	-
EB-2	5/14/2004	1.5					1.6	17			4.3		-	22					34
EB-2	5/14/2004	3.0	- 1		-			-		-	9.2	·		-		••			-
-	5/14/2004	1.5	**				2.0	23			4.7	<u></u>		32					42
EB-3	5/14/2004	3.0	<1.2	<1.5	170	<0.74	2.9	50	11	30	14	<0.085	<0.21	73	<0.69	<0.25	<2.3	43	61
EB-3	5/14/2004	5.0		<1.8	200		2.5	51			5.9	<0.73		-	<0.79	<0.29		_	
EB-3	3/14/2004	5.0		(1.6	200	_	2.3	, J,			J.,,	10.73			40.77	10.25			
EB-4	5/14/2004	1.5				-	3.9	55			99		• ••	56					120
EB-4	5/14/2004	3.0		-	-						14								
EB-4	5/14/2004	5.0				-	-				7.7			-		-			
EB-5	5/14/2004	1.5							**		8.4								_
EB-5	5/14/2004	3.0			. <u></u>		2.2	20		-	6.1			20					32
EB-5	5/14/2004	5.0			_					-	7.0	_						_	
1,15-5																			
EB-6	5/14/2004	1.5	<1.2	<1.5	110	<0.72	2.4	31	6.2	17	6.9	<0.074	<0.21	46	<0.67	<0.25	<2.3	29	46
EB-6	5/14/2004	4.5					2.1	59	-		510	-	_	51		_		-	120
EB-7	5/14/2004	1.5									8.6		-		-	-		-	
EB-7	5/14/2004	3.0			_	-	2.9	54			8.0			76	-	-			59
EB-7	5/14/2004	5.0								••	6.7						-		
	5/14/2004	1.5		<1.6	260		3.1	59			8.5	<0.083			<0.72	<0.26			
EB-8	5/14/2004	3.0					3.9	45	4-		16			66	_				55
EB-8 EB-8	5/14/2004	5.0									19						.		

Table 2 Soil Analytical Results for Total Metals 160 North Main Street Milpitas, California

Sample	Date	Sample Depth	Antimony	Arsenic	Barium	Beryllium	Cadmium	. Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
ID	Collected	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
EB-9	5/14/2004	1.5	-		1	1	-		-		26			-	-		-		-
EB-9	5/14/2004	3.0				-	4.4	50		-	8.4			74		-	-		58
EB-9	5/14/2004	5.0									6.8				-			-	-
EB-10	5/14/2004	1.5		<1.6	150		2.5	43			7.6	<0.095			<0.73	<0.27			
EB-10	5/14/2004	3.0					2.7	49		-	7.3			69					52
	•		,																
EB-11	5/14/2004	1.5	-	<1.7	130		2.8	58	-		40	<0.086	-		<0.76	<0.28	-		
EB-11	5/14/2004	3.0	-		-		-				7.2		-				-		
								,											220
EB-12	5/14/2004	1.5					3.4	35	-		340			52	-			••	230
EB-12	5/14/2004	3.0					**		••		9.1		-	-	_	·			-
												-0.005	-0.00	70	-0.74	<0.27	<2.5	60	61
EB-13	5/14/2004	1.5	<1.3	<1.7	200	<0.80	3.8	56	12	32	11	<0.095	<0.23	78	<0.74	l	1		1
EB-13	5/14/2004	3.0	-				3.8	. 49			7.3			68			-		53
															[1			
										ĺ					ļ				

Notes:

mg/kg = milligrams per kilogram
<1.3 = Analyte was not detected above the laboratory reporting limit (1.3 mg/kg)
-- = Not analyzed

Table 3
Groundwater Analytical Results for Petroleum Hydrocarbons
160 North Main Street
Milpitas, California

Sample ID	Sample Date	ТРНд	ТРНd	TPHmo	ТРНод	Benzene	Toluene	Ethylbenzene	Xylenes	VOCs	SVOCs
		(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
EB-2	5/17/2004	<100	<100	<400	24		1			ND	
EB-6	5/17/2004	<100					<u></u> .			(a)	
EB-8	5/17/2004	<100			100		t				
EB-10	5/17/2004	228	<100	<400		2.1	2.9	13	13		ND
EB-11	5/17/2004	1	<230	<900	==		, 1				

Notes:

TPHg = Total Petroleum Hydrocarbons as Gasoline, EPA Method 8015M

TPHd = Total Petroleum Hydrocarbons as Diesel Range (C10-C23), EPA Method 8015M

TPHmo = Total Petroleum Hydrocarbons as Motor Oil, EPA Method 8015M

TPHog = Total Petroleum Hydrocarbons as Oil and Grease, SM 5520M

VOCs = Volatile Organic Compounds, EPA 8260B

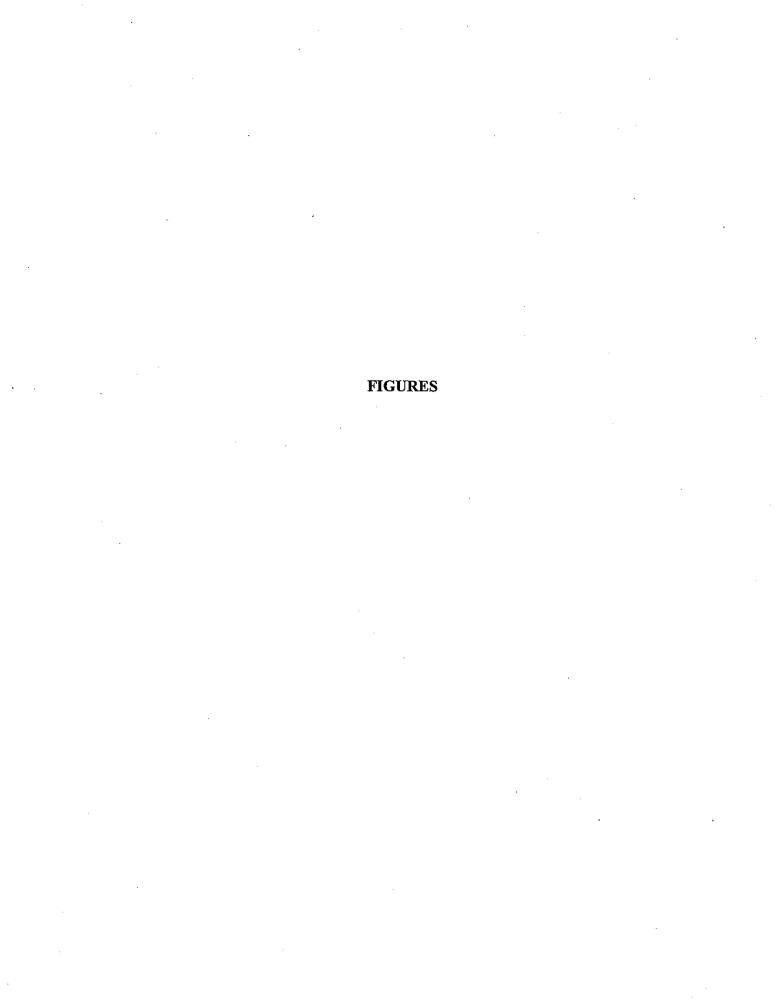
SVOCs = Semi volatile organic compounds, EPA Method 8270

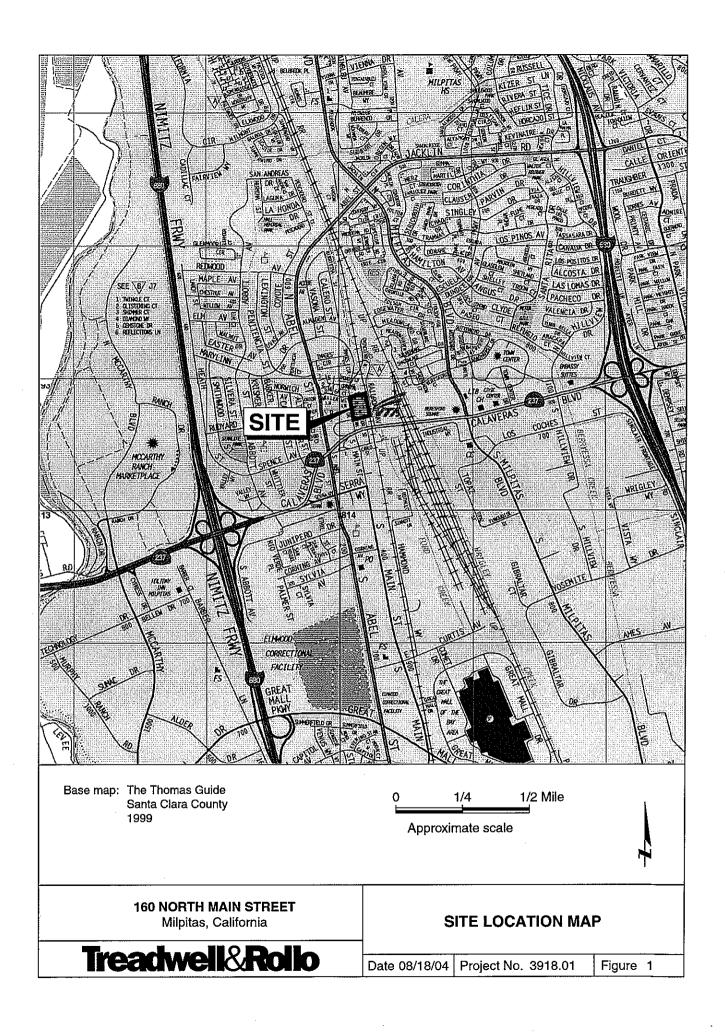
 $\mu g/L = \text{micrograms per liter}$

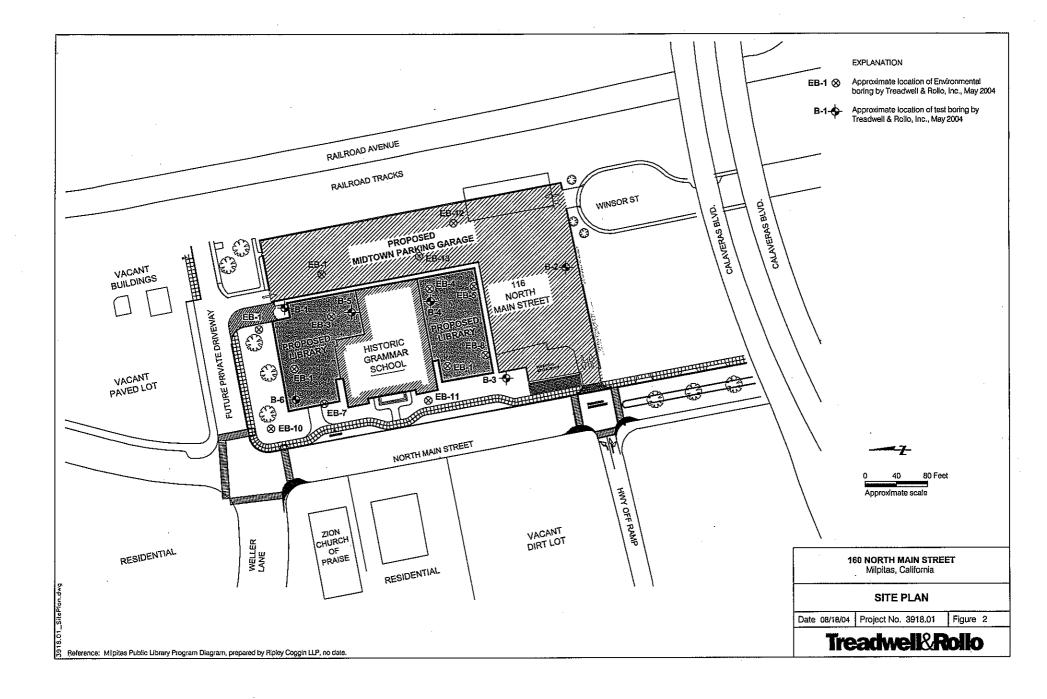
<100 = Analyte was not detected above the laboratory reporting limit (100 μ g/L)

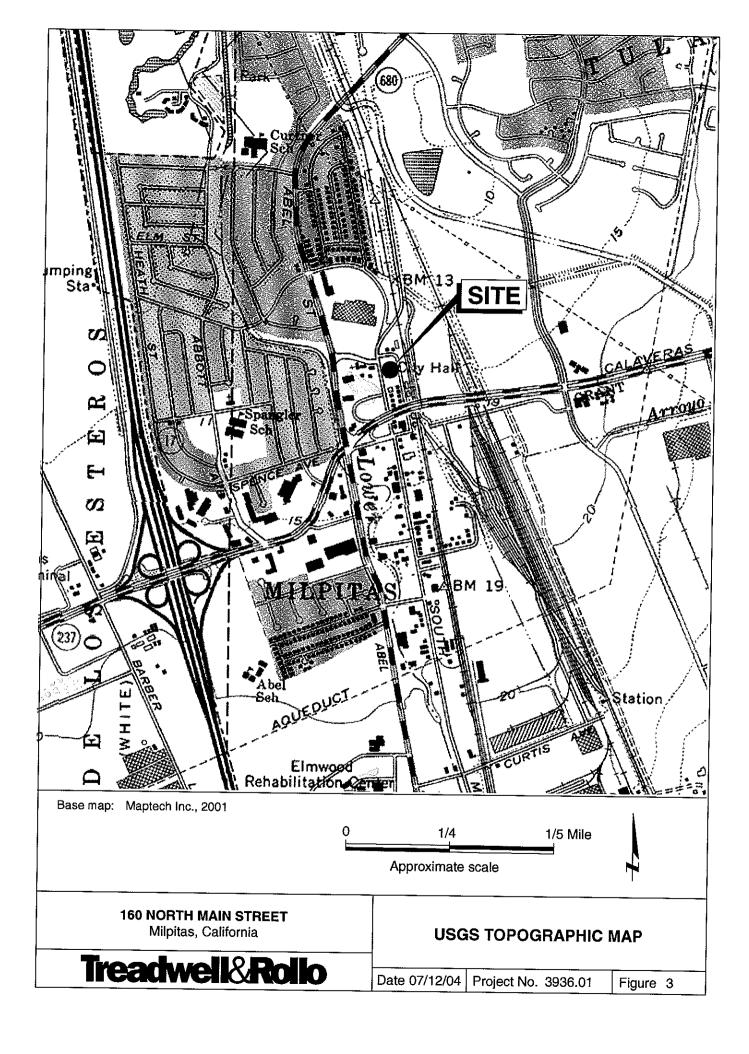
-- = Not Analyzed

ND = Not detected at or above the laboratory reporting limit

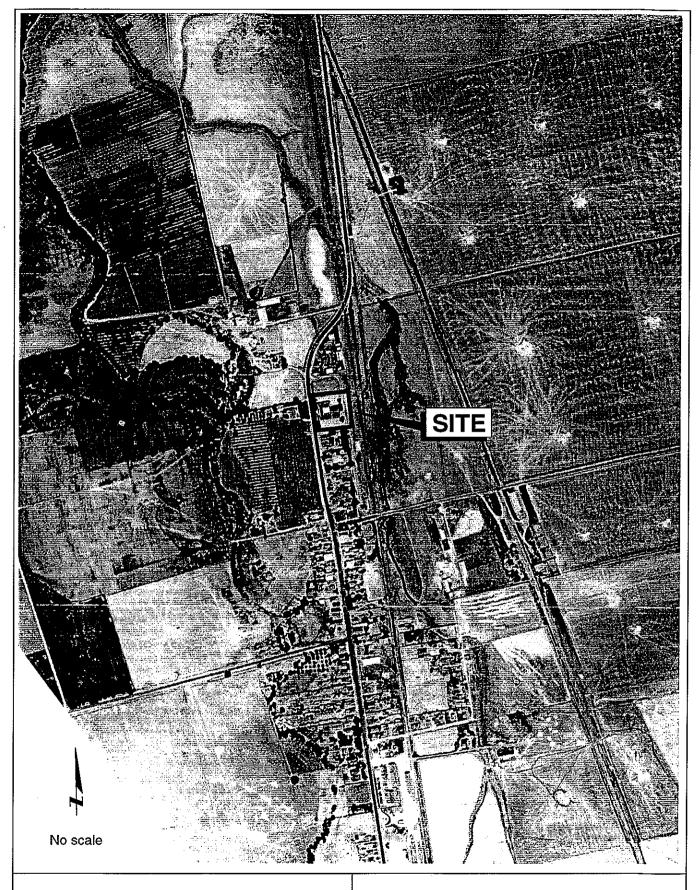

(a) = all VOCs were reported as ND except for 1,2-Dichloroethane which was detected at 3.0 μ g/L

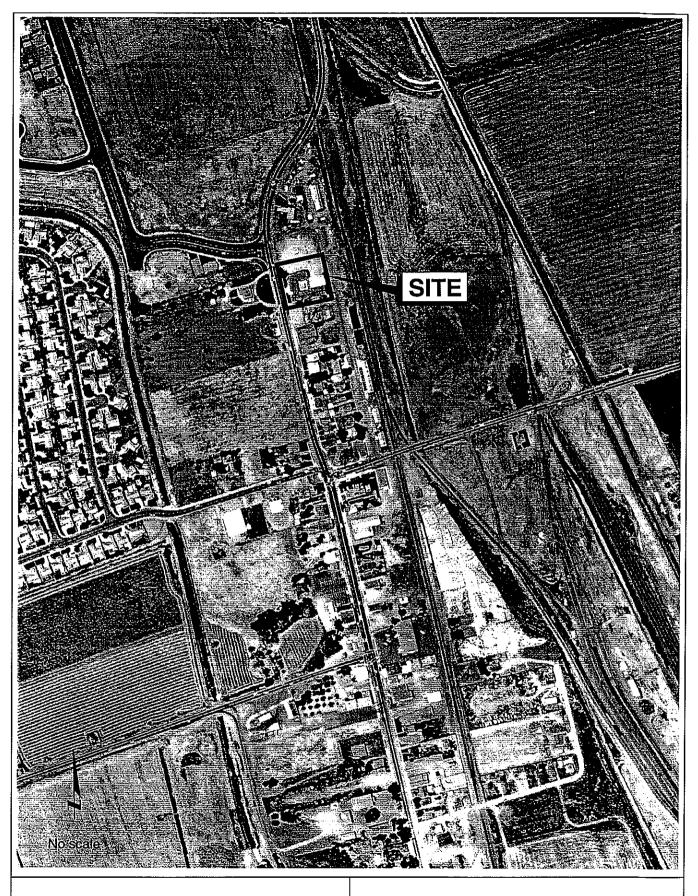

Table 4 Groundwater Analytical Results for Total Metals 160 North Main Street Milpitas, California


Sample		Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
ID	Collected	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
EB-2	5/17/2004					1	 :			50							-	
EB-6	5/17/2004	-		-		2.1	59	-		510	-		51	-				120
EB-8	5/17/2004	- .		**				-		19	-	-	-					
EB-10	5/17/2004	<10	<40	4/8/1900	<10	<10	35	<10	<10	<50	গ	190	51	. ⊲0	<10	<50	20	⊲0


Notes:

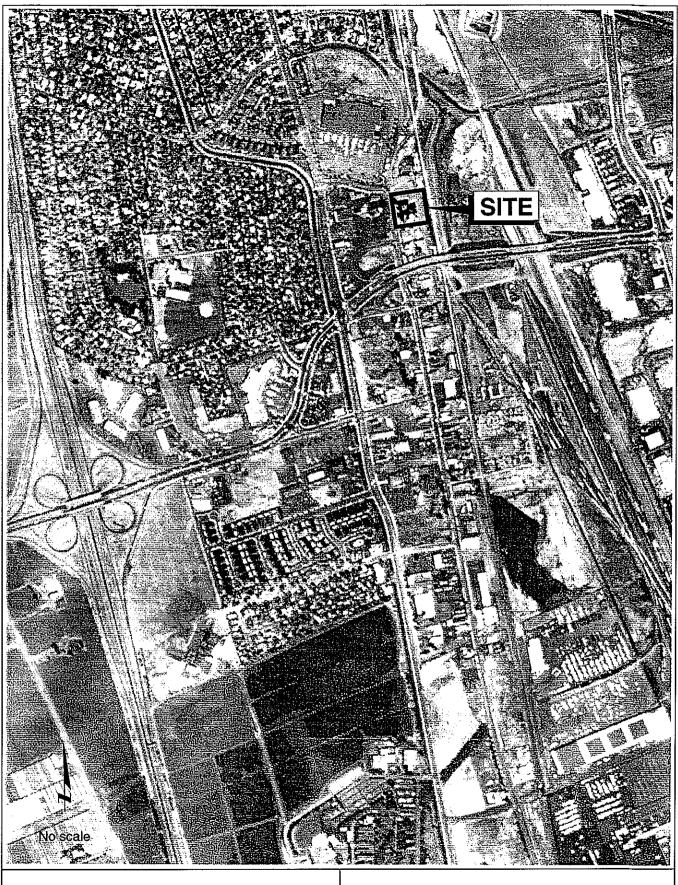
μg/L = micrograms per liter
 <1.3 = Analyte was not detected above the laboratory reporting limit (1.3 mg/kg)
 -- = Not analyzed




APPENDIX A Aerial Photographs

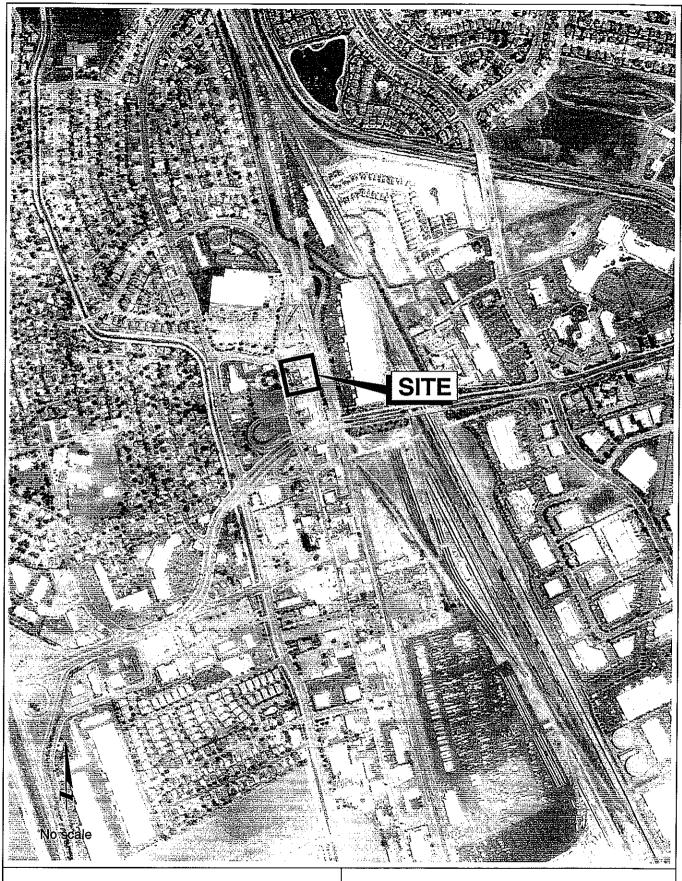
Treadwell&Rollo

1939 SANBORN MAP


Date 08/18/04 | Project No. 3918.01

Treadwell&Rollo

1965 SANBORN MAP


Date 08/18/04 Project No. 3918.01

Treadwell&Rollo

1982 SANBORN MAP

Date 08/18/04 | Project No. 3918.01

Treadwell&Rollo

1993 SANBORN MAP

Date 08/18/04 | Project No. 3918.01

APPENDIX B
EDR Environmental Data Resources, Inc. Report

The EDR Radius Map with GeoCheck®

Milpitas Library 160 North Main Street Milpitas, CA 95035

Inquiry Number: 1182143.2s

April 30, 2004

The Standard in Environmental Risk Management Information

440 Wheelers Farms Road Milford, Connecticut 06460

Nationwide Customer Service

Telephone: 1-800-352-0050 Fax: 1-800-231-6802 Internet: www.edrnet.com

TABLE OF CONTENTS

SECTION	PAGE
Executive Summary	ES1
Overview Map.	2
Detail Map.	3
Map Findings Summary	4
Map Findings.	6
EDR Proprietary Historical Map Findings	63
Orphan Summary	64
Government Records Searched/Data Currency Tracking	GR-1
GEOCHECK ADDENDUM	
Physical Setting Source Addendum	A-1
Physical Setting Source Summary	A-2
Physical Setting Source Map.	A-7
Physical Setting Source Map Findings	A-8
Physical Setting Source Records Searched	A-13

Thank you for your business.
Please contact EDR at 1-800-352-0050
with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This report contains information obtained from a variety of public and other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL EDR BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. It can not be concluded from this report that coverage information for the target and surrounding properties does not exist from other sources. Any analyses, estimates, ratings or risk codes provided in this report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Any liability on the part of EDR is strictly limited to a refund of the amount paid for this report.

Copyright 2004 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

A search of available environmental records was conducted by Environmental Data Resources, Inc. (EDR). The report meets the government records search requirements of ASTM Standard Practice for Environmental Site Assessments, E 1527-00. Search distances are per ASTM standard or custom distances requested by the user.

TARGET PROPERTY INFORMATION

ADDRESS

160 NORTH MAIN STREET MILPITAS, CA 95035

COORDINATES

Latitude (North): 37.432600 - 37° 25' 57.4" Longitude (West): 121.907300 - 121° 54' 26.3"

Universal Tranverse Mercator: Zone 10 UTM X (Meters): 596674.5 UTM Y (Meters): 4143220.0

Elevation: 14 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property: 37121-D8 MILPITAS, CA Source: USGS 7.5 min quad index

TARGET PROPERTY SEARCH RESULTS

The target property was identified in the following government records. For more information on this property see page 6 of the attached EDR Radius Map report:

Site	Database(s)	EPA ID
CORPORATION YARD 160 N MAIN ST MILPITAS, CA 95035	CA FID UST NA	N/A
160 NORTH MAIN STREET 160 NORTH MAIN STREET MILPITAS, CA 95035	CHMIRS	N/A
COMMUNITY CENTER 160 N MAIN ST MILPITAS, CA 95035	HIST UST	N/A
160 N. MAIN STREET 160 N. MAIN STREET MILPITAS, CA 95035	CHMIRS	N/A
160 N. MAIN STREET 160 N. MAIN STREET MILPITAS, CA 95035	ERNS	N/A
160 N. MAIN ST. 160 N. MAIN ST. MILPITAS, CA 95035	ERNS	N/A
MILPITAS SENIOR CENTER 160 MAIN ST N MILPITAS, CA 95035	Cortese	N/A

MILPITAS SENIOR CENTER 160 N MAIN STREET MILPITAS, CA 95035

HAZNET

N/A

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the ASTM E 1527-00 search radius around the target property for the following databases:

FEDERAL ASTM STANDARD

NPL..... National Priority List

Proposed NPL..... Proposed National Priority List Sites

System

CERC-NFRAP..... CERCLIS No Further Remedial Action Planned

CORRACTS...... Corrective Action Report

RCRIS-TSD...... Resource Conservation and Recovery Information System

STATE ASTM STANDARD

AWP..... Annual Workplan Sites Cal-Sites Database

Toxic Pits Cleanup Act Sites SWF/LF...... Solid Waste Information System WMUDS/SWAT...... Waste Management Unit Database CA BOND EXP. PLAN...... Bond Expenditure Plan

VCP...... Voluntary Cleanup Program Properties INDIAN UST....... Underground Storage Tanks on Indian Land INDIAN LUST...... Leaking Underground Storage Tanks on Indian Land

FEDERAL ASTM SUPPLEMENTAL

CONSENT...... Superfund (CERCLA) Consent Decrees

ROD..... Records Of Decision

Delisted NPL......National Priority List Deletions

FINDS...... Facility Index System/Facility Identification Initiative Program Summary Report

HMIRS..... Hazardous Materials Information Reporting System

MLTS Material Licensing Tracking System
MINES Mines Master Index File

NPL Liens Federal Superfund Liens PADS..... PCB Activity Database System FUDS Formerly Used Defense Sites

INDIAN RESERV..... Indian Reservations

DOD...... Department of Defense Sites **US BROWNFIELDS**..... A Listing of Brownfields Sites

RAATS......RCRA Administrative Action Tracking System

TRIS...... Toxic Chemical Release Inventory System

TSCA..... Toxic Substances Control Act SSTS______ Section 7 Tracking Systems

FTTS INSP...... FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fundicide, &

Rodenticide Act)/TSCA (Toxic Substances Control Act)

STATE OR LOCAL ASTM SUPPLEMENTAL

AST..... Aboveground Petroleum Storage Tank Facilities

CA WDS...... Waste Discharge System **DEED**.....List of Deed Restrictions

NFE..... Properties Needing Further Evaluation NFA..... No Further Action Determination EMI..... Emissions Inventory Data

REF...... Unconfirmed Properties Referred to Another Agency

SCH School Property Evaluation Program SAN JOSE HAZMAT Hazardous Material Facilities

BROWNFIELDS DATABASES

US BROWNFIELDS..... A Listing of Brownfields Sites

VCP..... Voluntary Cleanup Program Properties

EDR PROPRIETARY HISTORICAL DATABASES

See the EDR Proprietary Historical Database Section for details

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property.

Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in **bold italics** are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

FEDERAL ASTM STANDARD

RCRIS: Resource Conservation and Recovery Information System. RCRIS includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Conditionally exempt small quantity generators (CESQGs): generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month. Small quantity generators (SQGs): generate between 100 kg and 1,000 kg of hazardous waste per month. Large quantity generators (LQGs):

generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste from the generator off-site to a facility that can recycle, treat, store, or dispose of the waste. TSDFs treat, store, or dispose of the waste.

A review of the RCRIS-SQG list, as provided by EDR, and dated 03/09/2004 has revealed that there are 4 RCRIS-SQG sites within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
CONTEMPO DESIGN WEST, INC	212 RAILROAD AVENUE	0 - 1/8 SE	27	22
CALAVERAS AUTO PARTS INC	27 E CARLO	1/8 - 1/4SSE	<i>30</i>	28
PACIFIC BELL	76 CARLO STREET	1/8 - 1/4SSW	G37	32
PACIFIC BELL	L2N MILPITAS AVENUE	1/8 - 1/4SSW	G38	<i>35</i>

STATE ASTM STANDARD

CORTESE: This database identifies public drinking water wells with detectable levels of contamination, hazardous substance sites selected for remedial action, sites with known toxic material identified through the abandoned site assessment program, sites with USTs having a reportable release and all solid waste disposal facilities from which there is known migration. The source is the California Environmental Protection Agency/Office of Emergency Information.

A review of the Cortese list, as provided by EDR, has revealed that there are 11 Cortese sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
OLD CORPORATION YARD MILPITAS TRANSMISSION	116 MAIN ST N 130 WINSOR	0 - 1/8 NW 0 - 1/8 E	A9 B12	11 12
BEACON TRUSS COMM	10 MAIN ST N 80 RAILROAD AVE	0 - 1/8 S 0 - 1/8 E	D18 E26	17 21
TEXACO	92 SERRA WY 200 SERRA WAY	1/4 - 1/2SSW 1/4 - 1/2SSW	43	37 46
Not reported SHAPELL INDUSTRIES OF N CALIFO CHEVRON	100 N MILPITAS BLVD 342 CALAVERAS BLVD W	1/4 - 1/253W 1/4 - 1/2ENE 1/4 - 1/2SSW	48	49 53
Lower Elevation	Address	Dist / Dir	Map ID	Page
UNOCAL <i>MARYLINN WELL PUMP STATIO</i> MILPITAS BERRYESSA PUMP S	190 CALAVERAS BLVD W 350 MARYLINN 731 FOLSOM	1/8 - 1/4SSW 1/4 - 1/2WNW 1/4 - 1/2NNE	142	29 36 56

NOTIFY 65: Notify 65 records contain facility notifications about any release that could impact drinking water and thereby expose the public to a potential health risk. The data come from the State Water Resources Control Board's Proposition 65 database.

A review of the Notify 65 list, as provided by EDR, has revealed that there is 1 Notify 65 site within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
ARCO SERVICE STATION #2121	43 SOUTH ABBOTT	1/2 - 1 SW	58	62

LUST: The Leaking Underground Storage Tank Incident Reports contain an inventory of reported leaking underground storage tank incidents. The data come from the State Water Resources Control Board Leaking Underground Storage Tank Information System.

A review of the LUST list, as provided by EDR, and dated 04/13/2004 has revealed that there are 23 LUST sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
MICHAELS AUTO REPAIR	130 WINSOR ST	0 - 1/8 E	B10	12
MILPITAS TRANSMISSION	130 WINSOR	0 - 1/8 E	B12	12
OLD CO PO ATION YA D	116 N MAIN ST	0 - 1/8 NNW	C13	14
CITY OF MIPITAS CORPORATION YD	116 N MAIN ST	0 - 1/8 NNW	C14	15
BEACON	10 N MAIN ST	0 - 1/8 S	D21	18
TRUSS COMM	80 RAILROAD AVE	0 - 1/8 E	E26	21
TEXACO	92 SERRA WY	1/4 - 1/2SSW	43	<i>37</i>
P ESTON PIPELINES	151 BOTHELO AVE	1/4 - 1/2SE	J44	39
MILLER GIBSON INDUSTRIAL PUMPI	151 BOTHELO AVE	1/4 - 1/2SE	J45	40
USA PET OLEUM #102	200 SERRA WY	1/4 - 1/2SSW	K46	45
Not reported	200 SERRA WAY	1/4 - 1/2SSW	K47	46
SHAPELL INDUSTRIES OF N CALIFO	100 N MILPITAS BLVD	1/4 - 1/2ENE	48	49
CHEV ON #9-2435	342 W CALAVERAS BLVD	1/4 - 1/2SSW	L49	52
92435	<i>342 W CALAVERAS BLVD</i>	1/4 - 1/2SSW	L51	<i>53</i>
ABBOTT AUTO SERVICE	97 S ABBOTT AVE	1/4 - 1/2SW	N55	<i>56</i>
BP OIL FACILITY #11223	97 S ABBOTT AVE	1/4 - 1/2SW	N56	<i>58</i>
ARCO #2121	43 S ABBOTT AVE	1/4 - 1/2SW	57	59
Lower Elevation	Address	Dist / Dir	Map ID	Page
OWEN'S FINANCIAL GRP	230 N MAIN ST	1/8 - 1/4 N	F28	26
CHEV ON #9-0670	230 N MAIN ST	1/8 - 1/4 N	F29	27
UNOCAL #6397	190 W CALAVERAS BLVD	1/8 - 1/4SSW	G34	29
MARYLYNN WELL	350 MARYLINN DR	1/4 - 1/2 WNV	/ I 41	36
MARYLINN WELL PUMP STATIO	350 MARYLINN	1/4 - 1/2 WNW	<i>l</i> 142	36
MILPITAS - BERRYESSA PUMP STA.	731 FOLSOM CIR	1/4 - 1/2NNE	M53	<i>55</i>

UST: The Underground Storage Tank database contains registered USTs. USTs are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA). The data come from the State Water Resources Control Board's Hazardous Substance Storage Container Database.

A review of the UST list, as provided by EDR, and dated 04/13/2004 has revealed that there are 4 UST sites within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
MAIN STREET GAS PACIFIC BELL	10 N MAIN ST <i>76 CARLO STREET</i>	0 - 1/8 S 1/8 - 1/4<i>SSW</i>	D22 <i>G37</i>	19 32
Lower Elevation	Address	Dist / Dir	Map ID	Page
UNION OIL-CALAVERAS PLAZA UNIO				

CA FID: The Facility Inventory Database contains active and inactive underground storage tank locations. The source is the State Water Resource Control Board.

A review of the CA FID UST list, as provided by EDR, has revealed that there are 8 CA FID UST sites within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
MICHAELS AUTO REPAIR	130 WINSOR ST	0 - 1/8 E	B10	12
CITY OF MIPITAS CORPORATION YD	116 N MAIN ST	0 - 1/8 NNW	C14	15
K MART CORP	75 E WELLER LN	0 - 1/8 N	C17	16
BEACON STATION # 589	10 N MAIN ST	0 - 1/8 S	D20	17
TRUSS COM	80 RAILROAD AVE	0 - 1/8 E	E24	20
PACIFIC BELL	76 CARLO STREET	1/8 - 1/4SSW	G37	<i>32</i>
Lower Elevation	Address	Dist / Dir	Map ID	Page
UNOCAL SS#6397	190 W CALAVERAS BLVD	1/8 - 1/4SSW		30
WRIGLEY FORD CRK PUMP STATION	75 MARYLINN DR	1/8 - 1/4N	H40	35

HIST UST: Historical UST Registered Database.

A review of the HIST UST list, as provided by EDR, and dated 10/15/1990 has revealed that there are 8 HIST UST sites within approximately 0.25 miles of the target property.

Address	Dist / Dir	Map ID	Page
130 WINSOR ST	0 - 1/8 E	B11	12
116 N MAIN ST	0 - 1/8 NNW	C15	16
75 WELLER LN	0 - 1/8 N	C16	16
10 N MAIN ST	0 - 1/8 S	D19	17
80 RAILROAD AVE	0 - 1/8 E	E25	21
76 CARLO STREET	1/8 - 1/4SSW	G37	32
Address	Dist / Dir	Map ID	Page
190 W CALAVERAS BLVD 190 W CALAVERAS BLVD	.,		28 32
	130 WINSOR ST 116 N MAIN ST 75 WELLER LN 10 N MAIN ST 80 RAILROAD AVE 76 CARLO STREET Address 190 W CALAVERAS BLVD	130 WINSOR ST 0 - 1/8 E 116 N MAIN ST 0 - 1/8 NNW 75 WELLER LN 0 - 1/8 N 10 N MAIN ST 0 - 1/8 S 80 RAILROAD AVE 0 - 1/8 E 76 CARLO STREET 1/8 - 1/4 SSW Address Dist / Dir 190 W CALAVERAS BLVD 1/8 - 1/4 SSW	130 WINSOR ST 0 - 1/8 E B11 116 N MAIN ST 0 - 1/8 NNW C15 75 WELLER LN 0 - 1/8 N C16 10 N MAIN ST 0 - 1/8 S D19 80 RAILROAD AVE 0 - 1/8 E E25 76 CARLO STREET 1/8 - 1/4 SSW G37 Address Dist / Dir Map ID 190 W CALAVERAS BLVD 1/8 - 1/4 SSW G31

STATE OR LOCAL ASTM SUPPLEMENTAL

DRYCLEANERS:A list of drycleaner related facilities that have EPA ID numbers. These are facilities with certain SIC codes: power laundries, family and commercial; garment pressing and cleaners' agents; linen supply; coin-operated laundries and cleaning; drycleaning plants except rugs; carpet and upholster cleaning; industrial launderers; laundry and garment services.

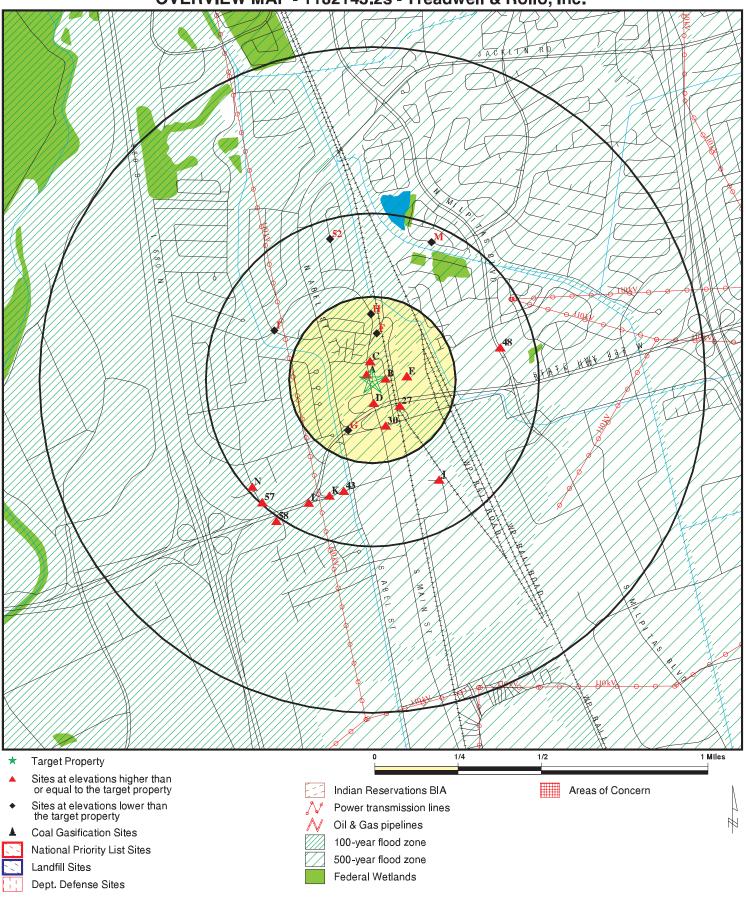
A review of the CLEANERS list, as provided by EDR, and dated 03/09/2004 has revealed that there is 1 CLEANERS site within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
CONTEMPO DESIGN WEST, INC	212 RAILROAD AVENUE	0 - 1/8 SE	27	22

CA SLIC: SLIC Region comes from the California Regional Water Quality Control Board.

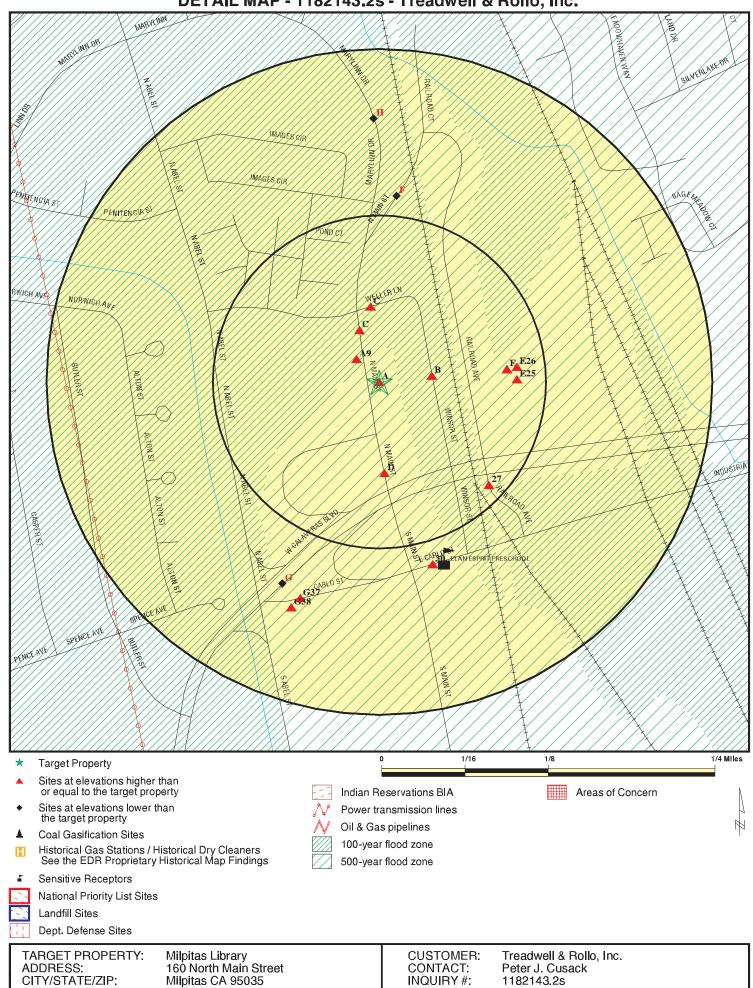
A review of the CA SLIC list, as provided by EDR, has revealed that there are 3 CA SLIC sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
TRUSS COMM/MILPITAS SITE MILLER GIBSON INDUSTRIAL PUMPI	80 RAILROAD AVE 151 BOTHELO AVE	0 - 1/8 E 1/4 - 1/2<i>SE</i>	E23 <i>J45</i>	19 40
Lower Elevation	Address	Dist / Dir	Map ID	Page
CASTLEMAN AND HASKELL	726/738 CALERO ST	1/4 - 1/2NNW	52	54


EDR PROPRIETARY HISTORICAL DATABASES

See the EDR Proprietary Historical Database Section for details

Due to poor or inadequate address information, the following sites were not mapped:


Site Name	Database(s)
JONES CHEMICAL	CERC-NFRAP
INTERNATIONAL DSPL CORP NEWBY IS LDFL	CERC-NFRAP
SOUTHERN PACIFIC PIPELINE	LUST
MILPITAS - PENNITENCIA PUMP	UST
MILPITAS - BELLEW PUMP STA.	UST
MILPITAS FIRE STATION #3	HIST UST
MILPITAS FIRE STATION #2	HIST UST
MILPITAS GAS TERMINAL	HIST UST
CITY MILPITAS/PUBLIC WORKS	HAZNET
MILPITAS SUB STATION	HAZNET
MILPITAS MOWERS, INC.	HAZNET
PG & E MILPITAS SUBSTATION	HAZNET
MILPITAS BUSINESS PA K BLDG C	HAZNET
EB 237 AT SOUTH MILPITAS BLVD	ERNS
JUST OFF I-80 IN MILPITAS A MILE SO OF DIXON LANDING ROAD	ERNS
MILPITAS YARD OF UNION PACIFIC	ERNS
985 MONTAGUE EXPRESSWAY CROSS S. MILPITAS BLVD	ERNS
MILPITAS GARBAGE DUMP	REF

OVERVIEW MAP - 1182143.2s - Treadwell & Rollo, Inc.

TARGET PROPERTY: ADDRESS: CITY/STATE/ZIP: LAT/LONG: Milpitas Library 160 North Main Street Milpitas CA 95035 37.4326 / 121.9073 CUSTOMER: Treadwell & Rollo, Inc.
CONTACT: Peter J. Cusack
INQUIRY#: 1182143.2s
DATE: April 30, 2004 8:52 am

DETAIL MAP - 1182143.2s - Treadwell & Rollo, Inc.

LAT/LONG:

37.4326 / 121.9073

April 30, 2004 8:52 am Copyright © 2004 EDR, Inc. © 2003 GDT, Inc. Rel. 07/2003. All Rights Reserved.

DATE:

MAP FINDINGS SUMMARY

Database	Target Property	Search Distance (Miles)	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted		
FEDERAL ASTM STANDARD										
NPL Proposed NPL CERCLIS CERC-NFRAP CORRACTS RCRIS-TSD RCRIS Lg. Quan. Gen. RCRIS Sm. Quan. Gen. ERNS	X	1.000 1.000 0.500 0.250 1.000 0.500 0.250 0.250	0 0 0 0 0 0 0 1 NR	0 0 0 0 0 0 0 3 NR	0 0 0 NR 0 0 NR NR NR	0 NR NR 0 NR NR NR	NR NR NR NR NR NR NR	0 0 0 0 0 0 0 0 4		
STATE ASTM STANDARD										
AWP Cal-Sites CHMIRS Cortese Notify 65 Toxic Pits State Landfill WMUDS/SWAT LUST CA Bond Exp. Plan UST VCP INDIAN UST INDIAN UST INDIAN LUST CA FID UST HIST UST	X X X X ENTAL	1.000 1.000 TP 0.500 1.000 0.500 0.500 0.500 0.500 0.250 0.250 0.250 0.250 0.250	0 0 NR 4 0 0 0 0 6 0 1 0 0 5 5 5	0 0 NR 1 0 0 0 0 3 0 3 0 0 3 3	0 0 NR 6 0 0 0 14 0 NR 0 NR 0 NR 0 NR	0 0 NR NR 1 0 NR NR NR NR NR NR NR NR NR	NR NR NR NR NR NR NR NR NR NR NR NR NR N	0 0 0 11 1 0 0 0 23 0 4 0 0 0 8 8		
CONSENT ROD Delisted NPL FINDS HMIRS MLTS MINES NPL LienS PADS FUDS INDIAN RESERV DOD US BROWNFIELDS RAATS TRIS TSCA		1.000 1.000 1.000 TP TP TP 0.250 TP TP 1.000 1.000 1.000 0.500 TP TP	0 0 0 NR	0 0 0 NR NR NR 0 NR NR 0 0 0 0 NR NR NR NR NR NR NR NR NR NR NR NR NR	0 0 0 NR NR NR NR NR NR NR NR NR NR NR NR NR	0 0 0 NR	N R R R R R R R R R R R R R R R R R R R	0 0 0 0 0 0 0 0 0		

MAP FINDINGS SUMMARY

Database	Target Property	Search Distance (Miles)	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted			
SSTS FTTS		TP TP	NR NR	NR NR	NR NR	NR NR	NR NR	0 0			
STATE OR LOCAL ASTM SUPPLEMENTAL											
AST CLEANERS CA WDS DEED NFE NFA EMI REF SCH CA SLIC HAZNET SAN JOSE HAZMAT	×	TP 0.250 TP TP 0.250 0.250 TP 0.250 0.250 0.250 0.500 TP 0.250	NR 1 NR NR 0 0 NR 0 1 NR	NR 0 NR 0 0 NR 0 0 0 NR	NR NR NR NR NR NR NR NR NR NR	NR NR NR NR NR NR NR NR NR NR NR NR	NR NR NR NR NR NR NR NR NR NR	0 1 0 0 0 0 0 0 0 0 0			
EDR PROPRIETARY HISTORICAL DATABASES											
Gas Stations/Dry Cleaners Coal Gas	3	0.250 1.000	0 0	0 0	NR 0	NR 0	NR NR	0 0			
BROWNFIELDS DATABASES											
US BROWNFIELDS VCP		0.500 0.500	0 0	0 0	0 0	NR NR	NR NR	0 0			

NOTES:

See the EDR Proprietary Historical Database Section for details

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

EPA ID Number

A1 CORPORATION YARD CA FID UST S101594438
Target 160 N MAIN ST LUST N/A

Property MILPITAS, CA 95035

Site 1 of 9 in cluster A

Actual: 14 ft.

LUST Region 2: Region:

Case Number: 06S1E06P02f Facility Id: Not reported Facility Status: Case Closed How Discovered: Not reported Not reported Leak Cause: Not reported Leak Source: Not reported Date Leak Confirmed: Prelim. Site Assesment Wokplan Submitted: Not reported 12/27/1990 Preliminary Site Assesment Began: 12/27/1990 Pollution Characterization Began:

Pollution Remediation Plan Submitted:

Date Remediation Action Underway:

Date Remediation Action Underway:

Not reported

Not reported

Not reported

FID:

Facility ID: 43000982 Regulate ID: 00058171

Reg By: Active Underground Storage Tank Location

Cortese Code: Not reported SIC Code: Not reported Status: Active Facility Tel: (408) 942-2463

Mail To: Not reported

455 E CALAVERAS BLVD MILPITAS, CA 95035

Contact: Not reported Contact Tel: Not reported DUNs No: Not reported NPDES No: Not reported Creation: 10/22/93 Modified: 00/00/00

EPA ID: Not reported Comments: Not reported

A2 CHMIRS S100277504
Target 160 NORTH MAIN STREET N/A

9116519

Target 160 NORTH MAIN STREET Property MILPITAS, CA 95035

Site 2 of 9 in cluster A

Actual: 14 ft.

CHMIRS:
OES Control Number:

Chemical Name: Not reported Extent of Release: Not reported Property Use: County/City Road Incident Date: 21-APR-91 Date Completed: 21-APR-91 Time Completed: 827 43030 Agency Id Number: Agency Incident Number: 91-8378F OES Incident Number: 9116519 Time Notified: 816 Surrounding Area: 500 Estimated Temperature: 60 Property Management: С More Than Two Substances Involved?: Ν

Special Studies 1 :Not reportedSpecial Studies 2 :Not reportedSpecial Studies 3 :Not reported

Direction Distance Distance (ft.)

EDR ID Number Database(s) Elevation Site **EPA ID Number**

(Continued) S100277504

Special Studies 4: Not reported Special Studies 5: Not reported Special Studies 6: Not reported

Responding Agency Personel # Of Injuries : Responding Agency Personel # Of Fatalities: 0 Resp Agncy Personel # Of Decontaminated: 0 Others Number Of Decontaminated: 0 Others Number Of Injuries: 0 Others Number Of Fatalities:

Vehicle Make/year: Not reported Vehicle License Number: Not reported Not reported Vehicle State: Vehicle Id Number: Not reported CA/DOT/PUC/ICC Number: Not reported Company Name: Not reported

CAPT. D. SMITH C-6 Reporting Officer Name/ID:

Report Date : 21-APR-91

Comments: No

408 942-2388 Facility Telephone Number: Not reported Waterway Involved: Waterway: Not reported Spill Site: Not reported Cleanup By: Not reported Containment: Not reported What Happened: Not reported Type: Not reported Other: Not reported Chemical 1: Not Reported Not Reported Chemical 2: Chemical 3: Not Reported Date/Time: Not reported Evacuations: Not reported

COMMUNITY CENTER HIST UST U001601450 А3 **Target** 160 N MAIN ST N/A

Facility Status:

Box Number:

Region:

Not reported

Not reported

STATE

Property MILPITAS, CA 95035

Site 3 of 9 in cluster A

Actual: 14 ft.

UST HIST:

Facility ID: 58171 Total Tanks: Owner Name: CITY OF MILPITAS

455 E. CALAVERAS BLVD. Owner Address:

MILPITAS, CA 95035

CHMIRS S100275744 Α4

160 N. MAIN STREET **Target Property** MILPITAS, CA 95035

Site 4 of 9 in cluster A

Actual: 14 ft.

CHMIRS:

OES Control Number: 9010733 Chemical Name: Not reported Extent of Release: Not reported Property Use: **Public Assembly** Incident Date: 09-MAY-90

N/A

Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s)

EPA ID Number

(Continued) S100275744

Date Completed: 09-MAY-90 Time Completed: 1834 Agency Id Number: 43030 Agency Incident Number: UNKNOWN OES Incident Number: 9010733 Time Notified: 1347 Surrounding Area: 500 Estimated Temperature: 75 Property Management: С More Than Two Substances Involved?: Ν

Special Studies 1:

Special Studies 2:

Special Studies 3:

Special Studies 3:

Not reported
Special Studies 4:

Special Studies 5:

Not reported
Special Studies 5:

Not reported
Special Studies 6:

Not reported

Responding Agency Personel # Of Injuries: 0
Responding Agency Personel # Of Fatalities: 0
Resp Agncy Personel # Of Decontaminated: 0
Others Number Of Decontaminated: 0
Others Number Of Injuries: 0
Others Number Of Fatalities: 0

Vehicle Make/year : Not reported
Vehicle License Number : Not reported
Vehicle State : Not reported
Vehicle Id Number : Not reported
CA/DOT/PUC/ICC Number : Not reported
Company Name : Not reported

Reporting Officer Name/ID: RICHARD JENKINS C15

Report Date : 09-MAY-90 Comments : No

Facility Telephone Number: 408 942-2388 Waterway Involved: Not reported Waterway: Not reported Spill Site: Not reported Cleanup By: Not reported Containment: Not reported What Happened: Not reported Type: Not reported Other: Not reported Chemical 1: Not Reported Chemical 2: Not Reported Chemical 3: Not Reported Date/Time: Not reported Not reported Evacuations:

A5 160 N. MAIN STREET ERNS 90167504
Target 160 N. MAIN STREET N/A
Property MILPITAS, CA 95035

Site 5 of 9 in cluster A

Actual: 14 ft.

The ERNS database may contain additional details for this site.

Please click here or contact your EDR Account Executive for more information.

Direction Distance Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s) EPA ID Number

A6 160 N. MAIN ST. ERNS 91216965
Target 160 N. MAIN ST. N/A

Property MILPITAS, CA 95035

Site 6 of 9 in cluster A

Actual: 14 ft.

The ERNS database may contain additional details for this site.

Please click here or contact your EDR Account Executive for more information.

A7 MILPITAS SENIOR CENTER Cortese S101303668

Target 160 MAIN ST N
Property MILPITAS, CA 95035

Site 7 of 9 in cluster A

Actual: 14 ft.

CORTESE:

Region: CORTESE Fac Address 2: 160 MAIN ST N

A8 MILPITAS SENIOR CENTER HAZNET S103880597
Target 160 N MAIN STREET LUST N/A

Property MILPITAS, CA 95035

Site 8 of 9 in cluster A

Actual: 14 ft.

State LUST:

Cross Street: Not reported

Qty Leaked: 0

Case Number Not reported

Reg Board: 2
Chemical: Gasoline
Lead Agency: Local Agency 43099L

Case Type: Other ground water affected

Status:Case ClosedReview Date:Not reportedConfirm Leak:Not reportedWorkplan:12/27/90 0:00Prelim Assess:12/27/90 0:00Pollution Char:Not reportedRemed Plan:Not reported

Remed Action: Not reported Monitoring: Not reported Close Date: 11/8/01 0:00 Release Date: 10/01/1990 Cleanup Fund Id : Not reported

Discover Date: //

Enforcement Dt: Not reported

Enf Type: SEL

Enter Date : Not reported Funding: Not reported

Staff Initials: RC

How Discovered: Not reported
How Stopped: Not reported
Interim: Not reported
Leak Cause: Not reported
Leak Source: Not reported
MTBE Date: 3/24/00 0:00
Max MTBE GW: 2.5 Parts per Billion

MTBE Tested: MTBE Detected. Site tested for MTBE & MTBE detected

Priority: Not reported

Local Case #: 0 Beneficial: MUN N/A

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s)

EPA ID Number

SCVWD Id:

Oversight Agency: SCVWD

06S1E06P02

MILPITAS SENIOR CENTER (Continued)

S103880597

Staff: ZSC GW Qualifier: <

Max MTBE Soil: Not reported
Soil Qualifier: Not reported
Hydr Basin #: Not reported
Operator: Not reported
Oversight Prgm: LUST

Review Date : Not reported

Stop Date: //

Work Suspended :Not reported
Responsible PartyJoe Ezeokeke
RP Address: 1265 N Milpitas Blvd
Global Id: T0608501232
Org Name: Not reported
Contact Person: Not reported
MTBE Conc: Not reported
Mtbe Fuel: Not reported

Water System Name: Not reported Well Name: Not reported

Distance To Lust: 0

Waste Discharge Global ID: Not reported Waste Disch Assigned Name: Not reported

LUST Region SC:

Region: Santa Clara Closed Date: 11/08/2001 Region Code: 2

Date Listed: 10/23/1990

HAZNET:

Gepaid: CAH111000004
TSD EPA ID: CAT000646117
Gen County: Santa Clara
Tsd County: Kings
Tons: .4750

Waste Category: Household waste
Disposal Method: Disposal, Land Fill
Contact: CITY OF MILPITAS
Telephone: (000) 000-0000
Mailing Address: 777 S MAIN STREET

MILPITAS, CA 95035

County Santa Clara

Gepaid: CAH111000004

TSD EPA ID: CAD008252405

Gen County: Santa Clara

Tsd County: Los Angeles

Tons: .4587

Waste Category: Household waste

Disposal Method: Recycler

Contact: CITY OF MILPITAS
Telephone: (000) 000-0000
Mailing Address: 777 S MAIN STREET

MILPITAS, CA 95035

County Santa Clara

MAP FINDINGS Map ID Direction

Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

MILPITAS SENIOR CENTER (Continued)

S103880597

CAH111000004 Gepaid: TSD EPA ID: CAD008252405 Gen County: Santa Clara Tsd County: Los Angeles Tons: .2293

Waste Category: Household waste Disposal Method: Not reported CITY OF MILPITAS Contact: Telephone: (000) 000-0000 Mailing Address: 777 S MAIN STREET

MILPITAS, CA 95035

Santa Clara County Gepaid: CAH111000004 TSD EPA ID: CAD044429835 Gen County: Santa Clara Tsd County: Los Angeles Tons: .0050

Waste Category: Household waste Disposal Method: Disposal, Other Contact: CITY OF MILPITAS Telephone: (000) 000-0000 Mailing Address: 777 S MAIN STREET

MILPITAS, CA 95035

County Santa Clara Gepaid: CAH111000004 TSD EPA ID: CAD008252405 Gen County: Santa Clara Tsd County: Los Angeles

0.688 Tons:

Waste Category: Household waste Disposal Method: Recycler

Contact: CITY OF MILPITAS Telephone: (000) 000-0000 Mailing Address: 777 S MAIN STREET

MILPITAS, CA 95035

County Santa Clara

The CA HAZNET database contains 1 additional record for this site.

Please click here or contact your EDR Account Executive for more information.

Α9 **OLD CORPORATION YARD** NW 116 MAIN ST N < 1/8 MILPITAS, CA 95053

129 ft. Relative:

Site 9 of 9 in cluster A

CORTESE: Equal

CORTESE Region: Actual: Fac Address 2: 116 MAIN ST N

14 ft.

S102428015

N/A

Cortese

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

EPA ID Number

B10 MICHAELS AUTO REPAIR CA FID UST \$101625205

< 1/8 MILPITAS, CA 95035

208 ft.

East

Site 1 of 3 in cluster B

130 WINSOR ST

Relative: Equal

LUST Region 2:
Region:

Actual: Case Number: 06S1E07C02f

14 ft. Facility Id: Not reported

Facility Status: Pollution Characterization

How Discovered: Not reported Leak Cause: Not reported Leak Source: Not reported Date Leak Confirmed: Not reported Prelim. Site Assesment Wokplan Submitted: Not reported 3/25/1994 Preliminary Site Assesment Began: Pollution Characterization Began: 8/16/1996 Pollution Remediation Plan Submitted: Not reported Date Remediation Action Underway: Not reported Date Remediation Action Underway: Not reported

FID:

Facility ID: 43008604 Regulate ID: 00048816

Reg By: Active Underground Storage Tank Location

Cortese Code: Not reported SIC Code: Not reported Status: Active Facility Tel: (408) 262-9919

Mail To: Not reported

130 WINSOR ST MILPITAS, CA 95035

Contact:Not reportedContact Tel:Not reportedDUNs No:Not reportedNPDES No:Not reportedCreation:10/22/93Modified:00/00/00

EPA ID: Not reported Comments: Not reported

B11 MICHAELS AUTO REPAIR HIST UST U001601473

130 WINSOR ST N/A

East 130 WINSOR ST < 1/8 MILPITAS, CA 95035

208 ft.

Site 2 of 3 in cluster B

Relative: Equal

UST HIST:

Facility ID: 48816 Facility Status: Not reported

Actual: Total Tanks: 1 Region: STATE

14 ft. Owner Name: MRS. DOROTHY WINSOR Box Number: Not reported

Owner Address: 1261 NORTH SAN PEDRO STREET

SAN JOSE, CA 95110

B12 MILPITAS TRANSMISSION Cortese S100940121

East 130 WINSOR HAZNET N/A

< 1/8 MILPITAS, CA 95035 HAZNET N/A LUST

208 ft.

Site 3 of 3 in cluster B

Relative:

Equal State LUST:

Cross Street: Not reported

Actual: Qty Leaked: 0

14 ft. Case Number Not reported

Reg Board: 2

Chemical: Gasoline

LUST

N/A

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s)

EPA ID Number

MILPITAS TRANSMISSION (Continued)

S100940121

Lead Agency: Local Agency

Local Agency: 43099L

Case Type: Other ground water affected Status: Pollution Characterization

Review Date: Not reported Confirm Leak: Not reported Workplan: 3/25/94 0:00 Prelim Assess: 3/25/94 0:00 Pollution Char: Not reported Remed Plan: Not reported

Remed Action: Not reported Monitoring: Not reported Close Date: Not reported Release Date: 04/21/1994 Cleanup Fund Id: Not reported

Discover Date: //

Enforcement Dt: Not reported

Enf Type: SEL

Enter Date : Not reported Funding: Not reported

Staff Initials: JM

How Discovered: Not reported
How Stopped: Not reported
Interim: Not reported
Leak Cause: Not reported
Leak Source: Not reported
MTBE Date: 7/25/96 0:00
Max MTBE GW: 18 Parts per Billion

MTBE Tested: MTBE Detected. Site tested for MTBE & MTBE detected

Priority: Not reported

Local Case #: 0
Beneficial: MUN
Staff: ZSC
GW Qualifier: =

Max MTBE Soil : Not reported Soil Qualifier : Not reported Hydr Basin #: Not reported Operator : Not reported Oversight Prgm: LUST Review Date : Not reported

Stop Date: //

Work Suspended :Not reported
Responsible PartyBob Winsor
RP Address: PO Box 611057
Global Id: T0608501810
Org Name: Not reported
Contact Person: Not reported
MTBE Conc: Not reported
Mtbe Fuel: Not reported

Water System Name: Not reported Well Name: Not reported Distance To Lust: 0

Waste Discharge Global ID: Not reported Waste Disch Assigned Name: Not reported

LUST Region SC:

Region: Santa Clara

Closed Date: // SCVWD Id: 06S1E07C02
Region Code: 2 Oversight Agency: SCVWD

Date Listed: 07/27/1994

Direction Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

MILPITAS TRANSMISSION (Continued)

S100940121

HAZNET:

CAL000030949 Gepaid: CAD083166728 TSD EPA ID: Gen County: Santa Clara Tsd County: Stanislaus .1376 Tons:

Waste Category: Oil/water separation sludge

Disposal Method: Recycler

Contact: SAVALA MICHAEL Telephone: (000) 000-0000 Mailing Address: 130 WINSOR STREET MILPITAS, CA 95035

County Santa Clara

CORTESE:

Region: **CORTESE** 130 WINSOR Fac Address 2:

LUST S103472928 C13 OLD CO PO ATION YA D NNW 116 N MAIN ST N/A MILPITAS, CA 95035

< 1/8 221 ft.

Site 1 of 5 in cluster C

Relative: Equal

State LUST:

Cross Street: Not reported

Actual: Qtv Leaked:

14 ft. Case Number Not reported

> Reg Board: Chemical: Gasoline Lead Agency: Local Agency Local Agency: 43099L

Other ground water affected Case Type:

Case Closed Status: Review Date: Confirm Leak: Not reported 12/27/90 0:00 Workplan: Prelim Assess: Remed Plan: Pollution Char: Not reported

Remed Action: Not reported Monitoring: Not reported 4/11/01 0:00 Close Date: Release Date: 10/01/1990 Cleanup Fund Id: Not reported

Discover Date:

Enforcement Dt: Not reported

Enf Type: SEL

Enter Date: Not reported Funding: Not reported

RC Staff Initials:

How Discovered: Not reported How Stopped: Not reported Interim: Not reported Leak Cause: Not reported Leak Source: Not reported 9/27/99 0:00 MTBE Date:

Max MTBE GW: 26.9 Parts per Billion

MTBE Tested: MTBE Detected. Site tested for MTBE & MTBE detected

Priority: Not reported

Local Case #: Beneficial: MUN Not reported

Not reported

12/27/90 0:00

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s) EPA ID Number

OLD CO PO ATION YA D (Continued)

S103472928

Staff: ZSC GW Qualifier: =

Max MTBE Soil: Not reported Soil Qualifier: Not reported Hydr Basin #: Not reported Operator: Not reported Oversight Prgm: LUST Review Date: Not reported

Stop Date : //

Work Suspended :Not reported
Responsible PartyJoe Ezeokeke
RP Address: 1265 N Milpitas Blvd
Global Id: T0608500416
Org Name: Not reported
Contact Person: Not reported
MTBE Conc: Not reported

Mtbe Fuel: Not reported
Water System Name: Not reported
Well Name: Not reported

Distance To Lust: 0

Waste Discharge Global ID: Not reported Waste Disch Assigned Name: Not reported

LUST Region SC:

Region: Santa Clara

 Closed Date:
 04/11/2001
 SCVWD Id:
 06S1E06P01

 Region Code:
 2
 Oversight Agency:
 SCVWD

Date Listed: 10/23/1990

C14 CITY OF MIPITAS CORPORATION YD NNW 116 N MAIN ST

< 1/8 MILPITAS, CA 95035 221 ft.

Site 2 of 5 in cluster C

Relative: Equal

LUST Region 2:

Region: 2

Actual: Case Number: 06S1E06P01f

14 ft. Facility Id: Not reported
Facility Status: Case Closed
How Discovered: Not reported
Leak Cause: Not reported

Leak Source: Not reported Date Leak Confirmed: Not reported Prelim. Site Assesment Wokplan Submitted: Not reported Preliminary Site Assesment Began: 12/27/1990 Pollution Characterization Began: 12/27/1990 Pollution Remediation Plan Submitted: Not reported Date Remediation Action Underway: Not reported Date Remediation Action Underway: Not reported CA FID UST

LUST

S101594411

N/A

Direction Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

CITY OF MIPITAS CORPORATION YD (Continued)

S101594411

FID:

43000549 00058170 Facility ID: Regulate ID:

Reg By: Active Underground Storage Tank Location

Cortese Code: Not reported SIC Code: Not reported Status: Active Facility Tel: Not reported

Mail To: Not reported

455 E CALAVERAS

MILPITAS, CA 95035

Contact: Not reported Contact Tel: Not reported DUNs No: Not reported NPDES No: Not reported 00/00/00 Creation: 10/22/93 Modified:

EPA ID: Not reported Not reported Comments:

CITY CORP. YARD HIST UST U001601448 C15 NNW

116 N MAIN ST N/A

< 1/8 MILPITAS, CA 95035

221 ft.

Site 3 of 5 in cluster C

Relative: UST HIST:

Equal Facility ID:

58170 Facility Status: Not reported Actual: Total Tanks: Region: STATE 14 ft. CITY OF MILPITAS Not reported Owner Name: Box Number:

Owner Address: 455 E. CALAVERAS BLVD.

MILPITAS, CA 95035

C16 **KMART ENTERPRISES** HIST UST U001601468

75 WELLER LN N/A

North < 1/8 MILPITAS, CA 95035

301 ft.

Site 4 of 5 in cluster C

Relative: UST HIST:

Equal Facility ID:

Facility Status: Total Tanks: STATE Actual: Region: 14 ft. Owner Name: **KMART CORPORATION** Box Number: Not reported

Owner Address: P.O. BOX 3150

14411

TROY, MI 48084

C17 **K MART CORP** CA FID UST S101594501 N/A

75 E WELLER LN North

< 1/8 MILPITAS, CA 95035 301 ft.

Site 5 of 5 in cluster C

Relative: **Equal**

Actual: 14 ft.

Not reported

Direction Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

K MART CORP (Continued) S101594501

FID:

00014411 Facility ID: 43002280 Regulate ID:

Reg By: Inactive Underground Storage Tank Location

Cortese Code: Not reported SIC Code: Not reported Status: Inactive Facility Tel: (408) 263-4134

Mail To: Not reported

> 75 E WELLER LN MILPITAS, CA 95035

Contact: Not reported Contact Tel: Not reported DUNs No: Not reported NPDES No: Not reported 00/00/00 Creation: 10/22/93 Modified:

EPA ID: Not reported Comments: Not reported

D18 **BEACON** S104162712 Cortese

South 10 MAIN ST N N/A

< 1/8 MILPITAS, CA 95035

361 ft.

Site 1 of 5 in cluster D

Relative: CORTESE:

Higher

CORTESE Region: Actual: Fac Address 2: 10 MAIN ST N

16 ft.

D19 U001601438 **BEACON STATION #589 HIST UST**

South 10 N MAIN ST N/A

< 1/8 MILPITAS, CA 95035

361 ft.

Site 2 of 5 in cluster D

Relative:

UST HIST: Higher Facility ID:

38886 Facility Status: Not reported STATE Actual: Total Tanks: 5 Region: 16 ft. CECILIA F. ROSE Not reported Owner Name: Box Number:

Owner Address: 1957 BIG BEND DRIVE MILPITAS, CA 95035

D20 **BEACON STATION #589** CA FID UST S101625185 South

10 N MAIN ST N/A

< 1/8 MILPITAS, CA 95035

361 ft.

Site 3 of 5 in cluster D

Relative: Higher

FID:

Facility ID: 43000381 Regulate ID: 00038886

Actual: Reg By: Active Underground Storage Tank Location

16 ft. Cortese Code: Not reported SIC Code: Not reported Active Facility Tel: (209) 582-0241 Status:

> Mail To: Not reported 525 W 003RD ST MILPITAS, CA 95035

Contact: Not reported Contact Tel: Not reported DUNs No: Not reported NPDES No: Not reported 10/22/93 Modified: 00/00/00 Creation:

EPA ID: Not reported Comments: Not reported

Direction Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

D21 **BEACON** LUST S105034790 South 10 N MAIN ST N/A

Confirm Leak:

Prelim Assess:

Remed Plan:

Not reported

8/1/83 0:00

Not reported

MILPITAS, CA 95035 < 1/8 361 ft.

Site 4 of 5 in cluster D

Relative: Higher

State LUST:

Cross Street: Not reported

Actual: 16 ft.

Qty Leaked:

Case Number Not reported

Reg Board:

Review Date:

Chemical: Gasoline Lead Agency: Local Agency Local Agency: 43099L

Case Type: Other ground water affected Status: Pollution Characterization Not reported

Workplan: 8/1/83 0:00 Not reported Pollution Char: Remed Action: Not reported Monitoring: Not reported Close Date: Not reported Release Date: 05/14/1986

Discover Date: //

Enforcement Dt: Not reported

Cleanup Fund Id: Not reported

Enf Type: SEL

Enter Date: Not reported Funding: Not reported

Staff Initials: JM

How Discovered: Not reported Not reported How Stopped: Interim: Not reported Leak Cause: Not reported Leak Source: Not reported MTBE Date: 8/27/96 0:00

Max MTBE GW: 1100 Parts per Billion

MTBE Detected. Site tested for MTBE & MTBE detected MTBE Tested:

Priority: Not reported

Local Case #: MUN Beneficial: Staff: ZSC GW Qualifier:

Max MTBE Soil: Not reported Soil Qualifier: Not reported Hydr Basin #: Not reported Operator: Not reported Oversight Prgm: LUST Review Date: Not reported Stop Date: Work Suspended :Not reported Responsible PartyRobert Fishburn

RP Address: 718 Los Pinos Ave. Global Id: T0608500221 Org Name: Not reported Contact Person: Not reported MTBE Conc: Not reported Mtbe Fuel: Not reported

Water System Name: Not reported

Direction Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

BEACON (Continued) S105034790

Well Name: Not reported

Distance To Lust:

Waste Discharge Global ID: Not reported Waste Disch Assigned Name: Not reported

LUST Region 2:

Region:

Case Number: 06S1E07C01f Facility Id: Not reported

Facility Status: Remedial action (cleanup) Underway

How Discovered: Not reported Leak Cause: Not reported Leak Source: Not reported Date Leak Confirmed: Not reported Prelim. Site Assesment Wokplan Submitted: Not reported Preliminary Site Assesment Began: 8/1/1983 Pollution Characterization Began: 7/10/1987 Pollution Remediation Plan Submitted: Not reported Date Remediation Action Underway: 12/7/1993 Date Remediation Action Underway: Not reported

LUST Region SC:

Region: Santa Clara

Closed Date: SCVWD Id: 06S1E07C01 11 Region Code: Oversight Agency: SCVWD

Date Listed: 01/01/1987

D22 MAIN STREET GAS UST U003782807 South 10 N MAIN ST N/A

MILPITAS, CA 95035 < 1/8

361 ft.

Site 5 of 5 in cluster D

Relative:

State UST: Higher

43-011-930318-0 Facility ID:

Actual: Region: STATE

16 ft. Local Agency: Milpitas, Santa Clara County

E23 TRUSS COMM/MILPITAS SITE CA SLIC S101303685

80 RAILROAD AVE East

MILPITAS, CA < 1/8

507 ft.

Site 1 of 4 in cluster E

Relative: Higher

SLIC Region 2:

43S0452 Facility ID:

Actual: Region:

15 ft. Facility Status: Closed - No Further Action Not reported Staff: Not reported Not reported

> Last Site Update: 08/11/1995 NPL Status: Not an NPL site Discovery Date: Not reported

Case List: SLIC Imaged: No

Date Closed: Not reported Not reported Substance: Not reported Abate Method: Case Type: Not reported Sample Date: Not reported

Contamination: Not reported Not reported Lead:

Contamination Level:

Number of Municipal Wells Contaminated by Site: 0 N/A

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

EPA ID Number

TRUSS COMM/MILPITAS SITE (Continued)

S101303685

Number of Private Wells Contaminated by Site:

Soil Removal or Contaminant Action Started:

Soil Removal or Contaminant Action Completed:

On-Site Groundwater Extraction or Containment is Needed:

On-Site Groundwater Extraction or Containment Started:

Off-Site Groundwater Extraction or Containment is Needed:

Off-Site Groundwater Extraction or Containment Started:

Length of Contamination Plume (Feet):

Depth of Contamination Plume (Feet):

OWells Closed Due To Contamination of Site:

Date of Wells Closure:

Nearest Public or Private Drinking Water Well (Feet): 0

Under Jurisdiction of Lead Agency Date:

Latitude/Longitude: 37 / -122 Flow Rate: 0

Flow Date:

Percent of Contaminants Contained: 0

Contaminant Type:

EPA ID:

Stages of Site Investigation Process Initiated:

Begun Characterization: Not reported Completed Characterization: Not reported Begun Remediation: Not reported Completed Remediation: Not reported Submitted Remediation Plan: Not reported Approved Remediation Plan: Not reported Begun Final Remedial Action: Not reported Completed Final Remedial Action: Not reported

Facility Desc: Not reported Comment: Not reported

E24 TRUSS COM CA FID UST S101594472
East 80 RAILROAD AVE CA FID UST N/A

East 80 RAILROAD AVE < 1/8 MILPITAS, CA 95035

507 ft.

Site 2 of 4 in cluster E

Relative: Higher

FID:

Facility ID: 43001474 Regulate ID: CAC000634

Actual: Reg By: Inactive Underground Storage Tank Location
15 ft. Cortese Code: Not reported SIC

Cortese Code: Not reported SIC Code: Not reported Status: Inactive Facility Tel: Not reported

Mail To: Not reported

2100 MARCONI AVE MILPITAS, CA 95035

Contact:Not reportedContact Tel:Not reportedDUNs No:Not reportedNPDES No:Not reportedCreation:10/22/93Modified:00/00/00

EPA ID: Not reported Comments: Not reported

Direction Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

E25 TRUSS-COM INC. **HIST UST** U001601497 **East 80 RAILROAD AVE**

Facility Status:

Box Number:

Region:

Not reported

Not reported

Not reported

Not reported

Not reported

STATE

N/A

MILPITAS, CA 95035 < 1/8

545 ft.

Site 3 of 4 in cluster E

Relative: Higher

UST HIST:

Facility ID: 11762 Actual: Total Tanks: 2

15 ft. Owner Name: TRUSS-GOM INC.

Owner Address: 5550 ROSEVILLE RD

NO. HIGHLAND, CA 95660

TRUSS COMM S105033371 E26 Cortese **East 80 RAILROAD AVE LUST** N/A

< 1/8 548 ft.

Site 4 of 4 in cluster E

MILPITAS, CA 95035

Relative: Higher

State LUST:

Cross Street:

Actual: 15 ft.

Not reported Qty Leaked: Case Number 43-0264 Reg Board: 2 Chemical: Diesel

Lead Agency: Regional Board 43099L Local Agency: Case Type: Soil only Status: Case Closed

Abate Method: No Action Taken - no action has as yet been taken at the site

Review Date: Not reported Confirm Leak: Workplan: Not reported Prelim Assess: Pollution Char: Not reported Remed Plan: Remed Action: Not reported

Monitoring: Not reported 6/16/95 0:00 Close Date: Release Date: 07/10/1992 Cleanup Fund Id: Not reported Discover Date : 07/10/1992 Enforcement Dt: Not reported Enf Type: Not reported Enter Date: 7/9/92 0:00 Funding: Federal Funds

Staff Initials: UNK

How Discovered: Tank Closure How Stopped: Not reported

Interim: No

Structure Failure Leak Cause:

Leak Source: Tank MTBE Date: Not reported Max MTBE GW: Not reported

MTBE Tested: Not Required to be Tested.

Priority: Not reported

Local Case #:

Beneficial: Not reported Staff: ZTM GW Qualifier: Not reported Max MTBE Soil: Not reported Soil Qualifier: Not reported Hydr Basin #: Santa Clara Basin (2

Operator: Not reported

Oversight Prgm: LUST

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

EPA ID Number

TRUSS COMM (Continued) S105033371

Review Date: 7/9/92 0:00 07/10/1992 Stop Date: Work Suspended :No Responsible PartyBLANK RP RP Address: Not reported T0608500321 Global Id: Org Name: Not reported Contact Person: Not reported MTBE Conc: Not reported Mtbe Fuel: Not reported

Water System Name: Not reported Well Name: Not reported

Distance To Lust: 0

Waste Discharge Global ID: Not reported Waste Disch Assigned Name: Not reported

LUST Region 2:

Region:

Case Number: 06S1E07B01
Facility Id: 43-0264
Facility Status: Case Closed

How Discovered: TC

Leak Cause: Structure Failure

Leak Source: Tank Date Leak Confirmed: Not reported Prelim. Site Assesment Wokplan Submitted: Not reported Preliminary Site Assesment Began: Not reported Pollution Characterization Began: 4/19/1995 Pollution Remediation Plan Submitted: Not reported Date Remediation Action Underway: Not reported Date Remediation Action Underway: Not reported

LUST Region SC:

Region: Santa Clara

Closed Date: 06/16/1995 SCVWD Id: 06S1E07B01 Region Code: 2 Oversight Agency: SFRWQCB

Date Listed: 07/09/1992

CORTESE:

Region: CORTESE Fac Address 2: 80 RAILROAD AVE

27 CONTEMPO DESIGN WEST, INC RCRIS-SQG

SE 212 RAILROAD AVENUE FINDS < 1/8 MILPITAS, CA 95035 EMI

595 ft. HAZNET
CLEANERS

Relative: Higher

Actual: 17 ft. 1000978137

CA0000923391

Map ID MAP FINDINGS
Direction

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s) EPA ID Number

CONTEMPO DESIGN WEST, INC (Continued)

1000978137

RCRIS:

Owner: CONTEMPO DESIGN WEST

(408) 956-9555

EPA ID: CA0000923391 Contact: JIM SMURR (408) 956-9555

Classification: Small Quantity Generator

TSDF Activities: Not reported

Violation Status: No violations found

FINDS:

Other Pertinent Environmental Activity Identified at Site:

National Emissions Inventory (NEI) National Emissions Trends (NET) National Toxics Inventory (NTI)

Resource Conservation and Recovery Act Information system (RCRAINFO)

CA Cleaners:

Inactive Date: 6/30/01

EPA Id: CA0000923391 Facility Address 2 Not reported

SIC Description: Drycleaning Plants, Except Rug Cleaning

NAICS Code: 81232

NAICS Descriptior Drycleaning and Laundry Services (except Coin-Operated)

Facility Active: No

Mail Name : Not reported
Mailing Address: 212 RAILROAD AVE

MILPITAS, CA 95035

Owner Name: CONTEMPO DESIGN WEST Mailing Address: 212 RAILROAD AVE

MILPITAS, CA 95035

Owner Telephone 4089569555

Contact Name: TOM FOLEY-PLANT MANAGER

Mailing Address: 212 RAILROAD AVE

MILPITAS, CA 95035

Contact Telephone 1089569555

Inactive Date: 6/30/01
EPA Id: CA0000923391
Facility Address 2 Not reported

SIC Description: Laundry and Garment Services, NEC (except diaper service and clothing alteration and repair)

NAICS Code: 81232

NAICS Descriptior Drycleaning and Laundry Services (except Coin-Operated)

Facility Active: No

Mail Name: Not reported

Mailing Address: 212 RAILROAD AVE MILPITAS, CA 95035

Owner Name: CONTEMPO DESIGN WEST

Mailing Address: 212 RAILROAD AVE MILPITAS, CA 95035

4000EC0EE

Owner Telephone 4089569555

Contact Name: TOM FOLEY-PLANT MANAGER

Mailing Address: 212 RAILROAD AVE

MILPITAS, CA 95035

Contact Telephone 089569555

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s) EPA ID Number

CONTEMPO DESIGN WEST, INC (Continued)

1000978137

Inactive Date: 6/30/01 EPA Id: CA0000923391 Facility Address 2 Not reported

SIC Description: Power Laundries, Family and Commercial

NAICS Code: 81232

NAICS DescriptiorDrycleaning and Laundry Services (except Coin-Operated)

Facility Active: No

Mail Name : Not reported
Mailing Address: 212 RAILROAD AVE
MILPITAS, CA 95035

Owner Name: CONTEMPO DESIGN WEST

Mailing Address: 212 RAILROAD AVE

MILPITAS, CA 95035

Owner Telephone 4089569555

Contact Name: TOM FOLEY-PLANT MANAGER

Mailing Address: 212 RAILROAD AVE

MILPITAS, CA 95035

Contact Telephone 089569555

Inactive Date: 6/30/01

EPA Id: CA0000923391 Facility Address 2 Not reported

SIC Description: Garment Pressing, and Agents for Laundries and Drycleaners

NAICS Code: 81232

NAICS Description Drycleaning and Laundry Services (except Coin-Operated)

Facility Active: No

Mail Name : Not reported
Mailing Address: 212 RAILROAD AVE

MILPITAS, CA 95035

Owner Name: CONTEMPO DESIGN WEST

Mailing Address: 212 RAILROAD AVE

MILPITAS, CA 95035

Owner Telephone 4089569555

Contact Name: TOM FOLEY-PLANT MANAGER

Mailing Address: 212 RAILROAD AVE

MILPITAS, CA 95035

Contact Telephone 1089569555

HAZNET:

Gepaid: CA0000923391
TSD EPA ID: CAT000613950
Gen County: Santa Clara
Tsd County: Sacramento
Tons: .8320

Waste Category: Oxygenated solvents (acetone, butanol, ethyl acetate, etc.)

Disposal Method: Transfer Station

Contact: CONTEMPO DESIGN WEST

Telephone: (408) 956-9555 Mailing Address: 212 RAILROAD AVE

MILPITAS, CA 95035 - 4338

County Santa Clara

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s) EPA ID Number

CONTEMPO DESIGN WEST, INC (Continued)

1000978137

Gepaid: CA0000923391
TSD EPA ID: CAT000613950
Gen County: Santa Clara
Tsd County: Sacramento
Tons: .0740

Waste Category: Oxygenated solvents (acetone, butanol, ethyl acetate, etc.)

Disposal Method: Not reported

Contact: CONTEMPO DESIGN WEST

Telephone: (408) 956-9555 Mailing Address: 212 RAILROAD AVE

MILPITAS, CA 95035 - 4338

County Santa Clara

Gepaid: CA0000923391

TSD EPA ID: CA0000084517

Gen County: Santa Clara

Tsd County: Sacramento

Tons: .3500

Waste Category: Oxygenated solvents (acetone, butanol, ethyl acetate, etc.)

Disposal Method: Transfer Station

Contact: CONTEMPO DESIGN WEST

Telephone: (408) 956-9555 Mailing Address: 212 RAILROAD AVE

MILPITAS, CA 95035 - 4338

County Santa Clara

Gepaid: CA0000923391

TSD EPA ID: CA0000084517

Gen County: Santa Clara

Tsd County: Sacramento

Tons: .5700

Waste Category: Oxygenated solvents (acetone, butanol, ethyl acetate, etc.)

Disposal Method: Transfer Station

Contact: CONTEMPO DESIGN WEST

Telephone: (408) 956-9555 Mailing Address: 212 RAILROAD AVE

MILPITAS, CA 95035 - 4338

County Santa Clara

Gepaid: CA0000923391
TSD EPA ID: CAT000613950
Gen County: Santa Clara
Tsd County: Sacramento
Tons: .0180

Waste Category: Oxygenated solvents (acetone, butanol, ethyl acetate, etc.)

Disposal Method: Transfer Station

Contact: CONTEMPO DESIGN WEST

Telephone: (408) 956-9555
Mailing Address: 212 RAILROAD AVE

MILPITAS, CA 95035 - 4338 Santa Clara

The CA HAZNET database contains 6 additional records for this site.

Please click here or contact your EDR Account Executive for more information.

EMISSIONS:

County

Facility ID: 7133
Air District Code: BA
SIC Code: 2812

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s)

EPA ID Number

06S1E06P03f

Not reported

CONTEMPO DESIGN WEST, INC (Continued)

1000978137

Total Priority Score : Not reported Health Risk Assessment : Not reported Non-cancer Chronic Haz Index : Not reported Non-cancer Acute Haz Index : Not reported Air Basin : SF

Air District Name:

Community Health Air Pollution Info System:

Consolidated Emission Reporting Rule:

Not reported

Total Organic Hydrocarbon Gases:

Reactive Organic Gases:

Carbon Monoxide Emissions:

NOX Gas Emissions (Nitrogen - Oxygen):

NOX Gas Emissions (Sulphur - Oxygen):

Not reported

Not reported

Not reported

Not reported

Facility ID:

Air District Code:

BA

SIC Code:

Total Priority Score:

Health Risk Assessment:

Not reported
Non-cancer Chronic Haz Index:

Non-cancer Acute Haz Index:

Air Basin: SF

Air District Name : BAY AREA AQMD
Community Health Air Pollution Info System : Not reported
Consolidated Emission Reporting Rule : Not reported

Total Organic Hydrocarbon Gases: 6
Reactive Organic Gases: 5
Carbon Monoxide Emissions: 0
NOX Gas Emissions (Nitrogen - Oxygen): 0
SOX Gas Emissions (Sulphur - Oxygen): 0

F28 OWEN'S FINANCIAL GRP

North 230 N MAIN ST 1/8-1/4 MILPITAS, CA 95036 741 ft.

Site 1 of 2 in cluster F

Relative: Lower

LUST Region 2: Region:

Actual: Case Number:
13 ft. Facility Id:
Facility Status:

Case Closed How Discovered: Not reported Leak Cause: Not reported Leak Source: Not reported Date Leak Confirmed: Not reported Prelim. Site Assesment Wokplan Submitted: Not reported 5/14/1996 Preliminary Site Assesment Began: Pollution Characterization Began: 7/1/1996 Pollution Remediation Plan Submitted: Not reported Date Remediation Action Underway: Not reported Date Remediation Action Underway: Not reported

HAZNET

LUST

S103643813

N/A

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

EPA ID Number

OWEN'S FINANCIAL GRP (Continued)

S103643813

HAZNET:

Gepaid: CAC000757792
TSD EPA ID: CAD980887418
Gen County: Santa Clara
Tsd County: 1

Tons: 3.7530

Waste Category: Waste oil and mixed oil

Disposal Method: Recycler

Contact: OWEN'S FINANCIAL GROUP INC

Telephone: (000) 000-0000

Mailing Address: 2221 OLYMPIC BLVD

WALNUT CREEK, CA 94595

County Santa Clara

F29 CHEV ON #9-0670 LUST \$103880598
North 230 N MAIN ST N/A

Confirm Leak:

Prelim Assess:

Remed Plan:

Not reported

5/14/96 0:00

Not reported

North 230 N MAIN ST 1/8-1/4 MILPITAS, CA 95035

741 ft.

Site 2 of 2 in cluster F

Relative: Lower

State LUST: Cross Street:

Cross Street: Not reported

Actual: Qty Leaked: 0

13 ft. Case Number Not reported

Reg Board: 2
Chemical: Gasoline

Lead Agency: Local Agency
Local Agency: 43099L

Case Type: Other ground water affected

Status: Case Closed
Review Date: Not reported
Workplan: 5/14/96 0:00
Pollution Char: Not reported

Remed Action: Not reported Monitoring: Not reported Close Date: 12/28/98 0:00 Release Date: 05/30/1996 Cleanup Fund Id : Not reported

Discover Date: //

Enforcement Dt: Not reported

Enf Type: SEL

Enter Date : Not reported Funding: Not reported

Staff Initials: DD

How Discovered: Not reported
How Stopped: Not reported
Interim: Not reported
Leak Cause: Not reported
Leak Source: Not reported
MTBE Date: 4/30/97 0:00
Max MTBE GW: 11 Parts per Billion

MTBE Tested: MTBE Detected. Site tested for MTBE & MTBE detected

Priority: Not reported

Local Case #: 0
Beneficial: MUN
Staff: ZSC
GW Qualifier: =

Max MTBE Soil: Not reported

MAP FINDINGS Map ID

Direction Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

CHEV ON #9-0670 (Continued) S103880598

Soil Qualifier: Not reported Hydr Basin #: Not reported Operator: Not reported Oversight Prgm: LUST Review Date: Not reported

Stop Date:

Work Suspended :Not reported Responsible PartyRichard Alfaro RP Address: P.O. Box 5004 Global Id: T0608502017 Org Name: Not reported Contact Person: Not reported MTBE Conc: Not reported Mtbe Fuel: Not reported

Water System Name: Not reported Well Name: Not reported

Distance To Lust:

Waste Discharge Global ID: Not reported Waste Disch Assigned Name: Not reported

LUST Region SC:

Region: Santa Clara Closed Date: 12/28/1998

Region Code: Date Listed: 06/27/1996

SCVWD Id:

Oversight Agency: SCVWD

06S1E06P03

RCRIS-SQG

FINDS

1000160294

CAD982461691

30 **CALAVERAS AUTO PARTS INC** SSE 27 E CARLO

1/8-1/4 MILPITAS, CA 95035

EPA ID:

753 ft.

RCRIS: Relative:

CALAVERAS AUTO PARTS Owner: Higher

(415) 555-1212 CAD982461691

Actual: 17 ft.

ENVIRONMENTAL MANAGER Contact:

(408) 262-0252

Classification: **Small Quantity Generator**

TSDF Activities: Not reported

Violation Status: No violations found

FINDS:

Other Pertinent Environmental Activity Identified at Site:

Resource Conservation and Recovery Act Information system (RCRAINFO)

HIST UST U001601501 G31 **UNION OIL SS# 6397** 190 W CALAVERAS BLVD N/A

SSW 1/8-1/4 MILPITAS, CA 95035

887 ft.

Site 1 of 8 in cluster G

Relative: UST HIST:

Lower

Facility ID: 60662 Facility Status: Not reported Actual: Total Tanks: Region: STATE 13 ft. UNION OIL CO. Owner Name: Box Number: Not reported

1 CALIFORNIA ST., SUITE 2700 Owner Address:

SAN FRANCISCO, CA 94111

MAP FINDINGS Map ID

Direction Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

G32 **UNION OIL-CALAVERAS PLAZA UNION 76** UST U003782788 N/A

SSW 190 W CALAVERAS BLVD 1/8-1/4 MILPITAS, CA 95035

887 ft.

Site 2 of 8 in cluster G

Relative:

State UST:

Lower

Facility ID: 43-011-021134-0

Actual: Region: STATE

13 ft. Local Agency: Milpitas, Santa Clara County

G33 S104396938 UNOCAL Cortese

190 CALAVERAS BLVD W SSW

1/8-1/4 MILPITAS, CA 95035

887 ft.

Site 3 of 8 in cluster G

Relative: CORTESE: Lower

Region: **CORTESE**

Actual: Fac Address 2: 190 CALAVERAS BLVD W

13 ft.

G34 **UNOCAL #6397** LUST S103880602

SSW 190 W CALAVERAS BLVD N/A

1/8-1/4 MILPITAS, CA

887 ft.

Site 4 of 8 in cluster G

Relative: Lower

State LUST:

Cross Street: Not reported

Actual: Qty Leaked:

13 ft. Case Number Not reported

Reg Board:

Chemical: Gasoline Lead Agency: Local Agency Local Agency: 43099L

Other ground water affected Case Type:

Pollution Characterization Status: Review Date: Not reported

Confirm Leak: Not reported Workplan: 11/1/88 0:00 Prelim Assess: 11/1/88 0:00 Pollution Char: Not reported Remed Plan: Not reported Remed Action: Not reported

Not reported Monitoring: Close Date: Not reported Release Date: 10/01/1986 Cleanup Fund Id: Not reported

Discover Date: //

Enforcement Dt: Not reported

Enf Type: SEL

Enter Date: Not reported Funding: Not reported

DH Staff Initials:

How Discovered: Not reported How Stopped: Not reported Interim: Not reported Leak Cause: Not reported Leak Source: Not reported MTBE Date: 7/31/00 0:00

Max MTBE GW: 5410 Parts per Billion

MTBE Tested: MTBE Detected. Site tested for MTBE & MTBE detected

Priority: Not reported N/A

Map ID MAP FINDINGS
Direction

Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s) EPA ID Number

UNOCAL #6397 (Continued)

S103880602

 Local Case # :
 0

 Beneficial:
 MUN

 Staff :
 ZSC

 GW Qualifier :
 =

Max MTBE Soil: 6.9 Parts per Million

Soil Qualifier: =

Hydr Basin #: Not reported
Operator: Not reported
Oversight Prgm: LUST
Review Date: Not reported

Stop Date: // Work Suspended:Not reported

Responsible PartyRobert Boust

RP Address: 2121 North California Boulevard

Global Id: T0608501504
Org Name: Not reported
Contact Person: Not reported
MTBE Conc: Not reported
Mtbe Fuel: Not reported

Water System Name: Not reported Well Name: Not reported

Distance To Lust: 0

Waste Discharge Global ID: Not reported Waste Disch Assigned Name: Not reported

LUST Region 2:

Region: 2

Case Number: 06S1E07F02f Facility Id: Not reported

Facility Status: Pollution Characterization

How Discovered: Not reported Leak Cause: Not reported Leak Source: Not reported Date Leak Confirmed: Not reported Prelim. Site Assesment Wokplan Submitted: Not reported 11/1/1988 Preliminary Site Assesment Began: Pollution Characterization Began: 6/18/1991 Pollution Remediation Plan Submitted: Not reported Date Remediation Action Underway: Not reported Date Remediation Action Underway: Not reported

LUST Region SC:

Region: Santa Clara

Closed Date: // SCVWD Id: 06S1E07F02
Region Code: 2 Oversight Agency: SCVWD

Date Listed: 01/01/1987

G35 UNOCAL SS#6397 SSW 190 W CALAVERAS BLVD 1/8-1/4 MILPITAS, CA 95035 887 ft.

Site 5 of 8 in cluster G

Relative: Lower

Actual:

Actual 13 ft.

TC1182143.2s Page 30

S101594474

N/A

CA FID UST

HAZNET

Map ID MAP FINDINGS
Direction

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s)

EPA ID Number

UNOCAL SS#6397 (Continued)

S101594474

HAZNET:

Gepaid: CAD982059156
TSD EPA ID: CAD980887418
Gen County: Santa Clara

Tsd County: 1 Tons: .1292

Waste Category: Waste oil and mixed oil

Disposal Method: Recycler

Contact: UNION OIL COMPANY OF CALIFORNI

Telephone: (714) 428-6560 Mailing Address: PO BOX 25376

SANTA ANA, CA 92799 - 5376

County Santa Clara

Gepaid: CAD982059156
TSD EPA ID: CAD083166728
Gen County: Santa Clara
Tsd County: Stanislaus
Tons: .8340

Waste Category: Tank bottom waste

Disposal Method: Recycler

Contact: UNION OIL COMPANY OF CALIFORNI

Telephone: (714) 428-6560 Mailing Address: PO BOX 25376

SANTA ANA, CA 92799 - 5376

County Santa Clara

Gepaid: CAD982059156
TSD EPA ID: CAD083166728
Gen County: Santa Clara
Tsd County: Stanislaus

Tons: .8340

Waste Category: Unspecified oil-containing waste

Disposal Method: Recycler

Contact: UNION OIL COMPANY OF CALIFORNI

Telephone: (714) 428-6560 Mailing Address: PO BOX 25376

SANTA ANA, CA 92799 - 5376

County Santa Clara

Gepaid: CAD982059156
TSD EPA ID: CAD009466392
Gen County: Santa Clara

Tsd County: 7 Tons: 10.2

Tons: 10.2750 Waste Category: Other empty containers 30 gallons or more

Disposal Method: Recycler

Contact: UNION OIL COMPANY OF CALIFORNI Telephone: (714) 428-6560

Mailing Address: PO BOX 25376

SANTA ANA, CA 92799 - 5376

County Santa Clara

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

EPA ID Number

UNOCAL SS#6397 (Continued)

S101594474

Gepaid: CAD982059156
TSD EPA ID: CAD043260702
Gen County: Santa Clara
Tsd County: San Mateo
Tons: 62.1330

Waste Category: Unspecified oil-containing waste

Disposal Method: Recycler

Contact: UNION OIL COMPANY OF CALIFORNI

Telephone: (714) 428-6560 Mailing Address: PO BOX 25376

SANTA ANA, CA 92799 - 5376

County Santa Clara

The CA HAZNET database contains 1 additional record for this site.

Please click here or contact your EDR Account Executive for more information.

FID:

Facility ID: 43001533 Regulate ID: 00021134

Reg By: Active Underground Storage Tank Location

Cortese Code: Not reported SIC Code: Not reported Status: Active Facility Tel: (408) 263-7600

Mail To: Not reported

190 W CALAVERAS BLVD MILPITAS, CA 95035

Contact: Not reported Contact Tel: Not reported DUNs No: Not reported NPDES No: Not reported Creation: 10/22/93 Modified: 00/00/00

EPA ID: Not reported Comments: Not reported

G36 UNION OILL SS#6397 HIST UST 1000167411
SSW 190 W CALAVERAS BLVD N/A

SSW 190 W CALAVERAS BLVD 1/8-1/4 MILPITAS, CA 95035

887 ft.

14 ft.

Site 6 of 8 in cluster G

Relative: Lower UST HIST:

Facility ID: 21134 Facility Status: Not reported

Actual: Total Tanks: 6 Region: STATE

13 ft. Owner Name: UNION OIL CO. Box Number: Not reported

Owner Address: 1 CALIFORNIA ST. SUITE 2700

SAN FRANCISCO, CA 94111

 G37
 PACIFIC BELL
 RCRIS-SQG
 1000251417

 SSW
 76 CARLO STREET
 FINDS
 CAT080022981

 1/8-1/4
 MILPITAS, CA 95035
 UST

 913 ft.
 CA FID UST

 Site 7 of 8 in cluster G
 HIST UST

Relative: HAZNET

Actual:

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s)

EPA ID Number

PACIFIC BELL (Continued) 1000251417

RCRIS:

Owner: NOT REQUIRED

(415) 555-1212

EPA ID: CAT080022981
Contact: Not reported

Classification: Small Quantity Generator

TSDF Activities: Not reported

Violation Status: No violations found

FINDS:

Other Pertinent Environmental Activity Identified at Site:

Resource Conservation and Recovery Act Information system (RCRAINFO)

HAZNET:

Gepaid: CAT080022981
TSD EPA ID: CAD982042475
Gen County: Santa Clara
Tsd County: Solano
Tons: 5.8996

Waste Category: Asbestos-containing waste

Disposal Method: Disposal, Land Fill
Contact: PACIFIC BELL
Telephone: (925) 823-6161
Mailing Address: RM 3E000

SAN RAMON, CA 94583 - 0995

County Santa Clara

Gepaid: CAT080022981
TSD EPA ID: CAD981382732
Gen County: Santa Clara

Tsd County: 1

Tons: 0.4214

Waste Category: Asbestos-containing waste

Disposal Method: Disposal, Land Fill
Contact: PACIFIC BELL
Telephone: (925) 823-6161
Mailing Address: RM 3E000

SAN RAMON, CA 94583 - 0995

County Santa Clara

Gepaid: CAT080022981
TSD EPA ID: CAL000027741
Gen County: Santa Clara

Tsd County: 5

Tons: 16.8560

Waste Category: Asbestos-containing waste Disposal Method: Disposal, Land Fill

Contact: PACIFIC BELL
Telephone: (925) 823-6161
Mailing Address: RM 3E000

SAN RAMON, CA 94583 - 0995

County Santa Clara

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

EPA ID Number

PACIFIC BELL (Continued) 1000251417

Gepaid: CAT080022981
TSD EPA ID: CAD981388952
Gen County: Santa Clara
Tsd County: Shasta
Tons: .1600

Waste Category: Asbestos-containing waste

Disposal Method: Disposal, Land Fill Contact: PACIFIC BELL Telephone: (925) 823-6161 Mailing Address: RM 3E000

SAN RAMON, CA 94583 - 0995

County Santa Clara

Gepaid: CAT080022981
TSD EPA ID: CAD028409019
Gen County: Santa Clara
Tsd County: Los Angeles
Tons: .1250

Waste Category: Other organic solids
Disposal Method: Transfer Station
Contact: PACIFIC BELL
Telephone: (925) 823-6161
Mailing Address: RM 3E000

SAN RAMON, CA 94583 - 0995

County Santa Clara

The CA HAZNET database contains 1 additional record for this site.

Please click here or contact your EDR Account Executive for more information.

FID:

Facility ID: 43010979 Regulate ID: 00057531

Reg By: Active Underground Storage Tank Location

Cortese Code: Not reported SIC Code: Not reported Status: Active Facility Tel: (415) 542-6758

Mail To: Not reported P O BOX

MILPITAS, CA 95035

Contact:Not reportedContact Tel:Not reportedDUNs No:Not reportedNPDES No:Not reportedCreation:10/22/93Modified:00/00/00

EPA ID: Not reported Comments: Not reported

UST HIST:

Facility ID: 57531 Facility Status: Not reported Total Tanks: 1 Region: STATE Owner Name: PACIFIC BELL Box Number: Not reported

Owner Address: 370 THIRD STREET SAN FRANCISCO, CA 94107

State UST:

Facility ID: 43-011-057531-0

Region: STATE

Local Agency: Milpitas, Santa Clara County

MAP FINDINGS Map ID

Direction Distance Distance (ft.)

EDR ID Number Elevation Site Database(s)

EPA ID Number

G38 **PACIFIC BELL** RCRIS-SQG 1000251571 SSW **L2N MILPITAS AVENUE FINDS** CAT080024714

MILPITAS, CA 95035 1/8-1/4 960 ft.

Site 8 of 8 in cluster G

Relative: Equal

Actual:

RCRIS:

NOT REQUIRED Owner:

(415) 555-1212 EPA ID: CAT080024714

14 ft. Contact: Not reported

Classification: **Small Quantity Generator**

TSDF Activities: Not reported Violation Status: No violations found

FINDS:

Other Pertinent Environmental Activity Identified at Site:

Resource Conservation and Recovery Act Information system (RCRAINFO)

H39 MILPITAS - WRIGLEY/FORD PUMP STA. UST U003782805 N/A

North **75 MARYLINN DR** 1/8-1/4 MILPITAS, CA 95035

1045 ft.

Site 1 of 2 in cluster H

Relative: Lower

State UST:

43-011-910429-0 Facility ID:

Actual: Region: STATE

13 ft. Local Agency: Milpitas, Santa Clara County

H40 WRIGLEY FORD CRK PUMP STATION **CA FID UST** S101594678 North **75 MARYLINN DR** N/A

MILPITAS, CA 95035 1/8-1/4

1045 ft.

Site 2 of 2 in cluster H

Relative: Lower

FID:

Facility ID: 43012305 Regulate ID: Not reported

Actual: Reg By: Active Underground Storage Tank Location

13 ft. SIC Code: Cortese Code: Not reported Not reported Facility Tel: (408) 263-7358 Status: Active

Mail To: Not reported

75 MARYLINN DR MILPITAS, CA 95035

Contact: Not reported Contact Tel: Not reported DUNs No: Not reported NPDES No: Not reported Creation: 10/22/93 Modified: 00/00/00

EPA ID: Not reported Not reported Comments:

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

EPA ID Number

 I41
 MARYLYNN WELL
 HIST UST
 U001601471

 WNW
 350 MARYLINN DR
 LUST
 N/A

1/4-1/2 MILPITAS, CA 95035 1742 ft.

Site 1 of 2 in cluster I

Relative: Lower

LUST Region 2: Region: 2

Actual: Case Number: 06S1E06N01f

13 ft. Facility Id: Not reported
Facility Status: Case Closed
How Discovered: Not reported

Leak Cause: Not reported Leak Source: Not reported Date Leak Confirmed: Not reported Prelim. Site Assesment Wokplan Submitted: Not reported Preliminary Site Assesment Began: Not reported Pollution Characterization Began: Not reported Pollution Remediation Plan Submitted: Not reported Date Remediation Action Underway: Not reported Date Remediation Action Underway: Not reported

UST HIST:

Facility ID: 58173 Facility Status: Not reported Total Tanks: 1 Region: STATE Owner Name: CITY OF MILPITAS Box Number: Not reported

Owner Address: 455 E. CALAVERAS BLVD.

MILPITAS, CA 95035

I42MARYLINN WELL PUMP STATIOCortese\$104162720WNW350 MARYLINNLUSTN/A

Confirm Leak:

Prelim Assess:

Remed Plan:

Not reported

Not reported

Not reported

1/4-1/2 1742 ft. MILPITAS, CA 95035 Site 2 of 2 in cluster I

Relative: Lower

State LUST:

Cross Street: Not reported

Actual: Qty Leaked:

13 ft. Case Number Not reported

Reg Board: Chemical: Diesel Lead Agency: Local Agency Local Agency: 43099L Case Type: Soil only Status: Case Closed Review Date: Not reported Workplan: Not reported Pollution Char: Not reported

Remed Action: Not reported Monitoring: Not reported Close Date: 8/24/98 0:00 Release Date: 06/19/1998 Cleanup Fund Id: Not reported

Discover Date: //

Enforcement Dt : Not reported Enf Type: Not reported Enter Date : Not reported Funding: Not reported

Staff Initials: CT

How Discovered: Not reported How Stopped: Not reported

TC1182143.2s Page 36

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s)

EPA ID Number

MARYLINN WELL PUMP STATIO (Continued)

S104162720

Interim: Not reported
Leak Cause: Not reported
Leak Source: Not reported
MTBE Date: Not reported
Max MTBE GW: Not reported

MTBE Tested: Not Required to be Tested.

Priority: Not reported

Local Case #:

Beneficial: MUN Staff: ZSC GW Qualifier: Not reported Max MTBE Soil: Not reported Soil Qualifier: Not reported Hydr Basin #: Not reported Operator: Not reported Oversight Prgm: LUST Review Date: Not reported

Stop Date: //

Work Suspended :Not reported Responsible PartyDon Bockman

RP Address: 1265 North Milpitas Boulevard

Global Id: T0608502105
Org Name: Not reported
Contact Person: Not reported
MTBE Conc: Not reported
Mtbe Fuel: Not reported

Water System Name: Not reported Well Name: Not reported

Distance To Lust:

Waste Discharge Global ID: Not reported Waste Disch Assigned Name: Not reported

LUST Region SC:

Region: Santa Clara Closed Date: 08/24/1998 Region Code: 2

Date Listed: 08/24/1998

CORTESE:

Region: CORTESE Fac Address 2: Not reported

43 TEXACO Cortese \$104164437 SSW 92 SERRA WY HAZNET N/A 1/4-1/2 MILPITAS, CA 94804 LUST

SCVWD Id:

Oversight Agency: SCVWD

06S1E06N01

1816 ft.

Actual:

Relative: State LUST: Higher Cross Str

Cross Street: Not reported

Qty Leaked: 0
Case Number Not reported

18 ft. Reg Board: 2

Chemical: Waste Oil
Lead Agency: Local Agency
Local Agency: 43099L

Case Type: Other ground water affected

Status: Case Closed

Review Date:Not reportedConfirm Leak:Not reportedWorkplan:11/14/90 0:00Prelim Assess:11/14/90 0:00Pollution Char:Not reportedRemed Plan:Not reported

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s)

EPA ID Number

TEXACO (Continued) S104164437

Remed Action: Not reported Monitoring: Not reported Close Date: 6/26/96 0:00 Release Date: 06/04/1986 Cleanup Fund Id: Not reported

Discover Date: //

Enforcement Dt: Not reported

Enf Type: NOR

Enter Date : Not reported Funding: Not reported

Staff Initials: CT

How Discovered: Not reported How Stopped: Not reported Interim: Not reported Leak Cause: Not reported Leak Source: Not reported MTBE Date: Not reported Max MTBE GW: Not reported

MTBE Tested: Not Required to be Tested.

Priority: Not reported

Local Case #: 0
Beneficial: MUN
Staff: ZSC

GW Qualifier : Not reported
Max MTBE Soil : Not reported
Soil Qualifier : Not reported
Hydr Basin #: Not reported
Operator : Not reported
Oversight Prgm: LUST
Review Date : Not reported

Stop Date: //

Work Suspended :Not reported Responsible PartyPrime Properties

RP Address: 916 Silver Spur Rd. #202

Global Id: T0608501430
Org Name: Not reported
Contact Person: Not reported
MTBE Conc: Not reported
Mtbe Fuel: Not reported

Water System Name: Not reported Well Name: Not reported

Distance To Lust: 0

Waste Discharge Global ID: Not reported Waste Disch Assigned Name: Not reported

LUST Region 2:

Region: 2

06S1E07F01f Case Number: Facility Id: Not reported Facility Status: Case Closed How Discovered: Not reported Leak Cause: Not reported Leak Source: Not reported Date Leak Confirmed: Not reported Prelim. Site Assesment Wokplan Submitted: Not reported Preliminary Site Assesment Began: 11/14/1990 Pollution Characterization Began: Not reported Pollution Remediation Plan Submitted: Not reported

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

EPA ID Number

TEXACO (Continued) S104164437

SCVWD Id:

Oversight Agency: SCVWD

06S1E07F01

Date Remediation Action Underway: Not reported Date Remediation Action Underway: Not reported

LUST Region SC:

Region: Santa Clara Closed Date: 06/26/1996

Region Code: 2 Date Listed: 01/01/1987

HAZNET:

Gepaid: CAL000077264
TSD EPA ID: CAD088838222
Gen County: Santa Clara
Tsd County: Santa Cruz
Tons: .0834

Waste Category: Unspecified aqueous solution

Disposal Method: Recycler
Contact: ZACK SROUJI
Telephone: (408) 262-3211

Mailing Address: 3031 TISCH WAY SUITE 505

SAN JOSE, CA 95128 - 2532

County Santa Clara

CORTESE:

Region: CORTESE Fac Address 2: 92 SERRA WY

J44 P ESTON PIPELINES LUST S105512829
SE 151 BOTHELO AVE N/A

1/4-1/2 1902 ft. MILPITAS, CA

Site 1 of 2 in cluster J

Relative: Higher

State LUST:

Cross Street: Not reported al: Qty Leaked: 0

Actual: Qty Leaked: 17 ft. Case Number

Case Number Not reported

Reg Board: 2
Chemical: Gasoline
Lead Agency: Local Agency 43099L

Case Type: Other ground water affected

Status: Preliminary site assessment underway

Review Date: Not reported Confirm Leak: Not reported Workplan: 3/10/99 0:00 Prelim Assess: 3/10/99 0:00 Remed Action: Not reported Remed Action: Not reported Remed Action: Not reported Remed Action: Not reported Remed Remed Action: Not reported Remed Remed Action: Not reported Remed Reme

Remed Action: Not reported Monitoring: Not reported Close Date: Not reported Release Date: 10/25/2000 Cleanup Fund Id: Not reported

Discover Date: // Enforcement Dt: Not reported

Enf Type: SEL

Enter Date : Not reported Funding: Not reported

Staff Initials: MS

How Discovered: Not reported How Stopped: Not reported Interim: Not reported

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s) EPA ID Number

P ESTON PIPELINES (Continued)

S105512829

Leak Cause: Not reported
Leak Source: Not reported
MTBE Date: 6/3/99 0:00

Max MTBE GW: 13000 Parts per Billion

MTBE Tested: MTBE Detected. Site tested for MTBE & MTBE detected

Priority: Not reported

Local Case #: 0
Beneficial: MUN
Staff: ZSC
GW Qualifier: =

Max MTBE Soil: 0.11 Parts per Million

Soil Qualifier: =

Hydr Basin #: Not reported
Operator: Not reported
Oversight Prgm: LUST
Review Date: Not reported

Stop Date: //

Work Suspended :Not reported
Responsible PartyMichael D. Preston
RP Address: 151 Bothelo Avenue
Global Id: T0608525893
Org Name: Not reported
Contact Person: Not reported
MTBE Conc: Not reported
Mtbe Fuel: Not reported

Water System Name: Not reported Well Name: Not reported

Distance To Lust: 0

Waste Discharge Global ID: Not reported Waste Disch Assigned Name: Not reported

LUST Region SC:

Region: Santa Clara

Closed Date: // SCVWD Id: 06S1E07F04
Region Code: 2 Oversight Agency: SCVWD

Date Listed: 11/20/2000

 J45
 MILLER GIBSON INDUSTRIAL PUMPING
 CA SLIC
 \$101482391

 SE
 151 BOTHELO AVE
 HAZNET
 N/A

 1/4-1/2
 MILPITAS, CA 95035
 REF

 1902 ft.
 LUST

Site 2 of 2 in cluster J

Relative: Higher LUST Region 2:

Region: 2

Actual: Case Number: 06S1E07F04f 17 ft. Facility ld: Not reported

Facility Status: Pollution Characterization

How Discovered: Not reported Leak Cause: Not reported Not reported Leak Source: Date Leak Confirmed: Not reported Not reported Prelim. Site Assesment Wokplan Submitted: 3/10/1999 Preliminary Site Assesment Began: Pollution Characterization Began: 3/10/1999 Pollution Remediation Plan Submitted: Not reported Date Remediation Action Underway: Not reported Date Remediation Action Underway: Not reported

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s)

EPA ID Number

MILLER GIBSON INDUSTRIAL PUMPING (Continued)

S101482391

REF:

Facility ID 43490054

Dtsc Region Code: 2

Region Code Definition: BERKELEY

County Code: 43

Site Name Under : Not reported Current Status Date : 06231994 Current Status Code : REFOA

Current Status: PROPERTY/SITE REFERRED TO ANOTHER AGENCY

Lead Agency Code : Not reported

Lead Agency: N/A

Site Type Code : Not reported Site Type : N/A

National Priorities List: Not reported
Tier: Not reported
Source Of Funding Code: Not reported
Staff Member: Not reported
Supervisor: Not reported

Sic Code: 49

Sic Code Definition: ELECTRIC, GAS & SANITARY SERVICES

Site Mitigatn & Brnflds Reuse Prog (SMBR) Code: NC

SMBR Branch: NORTH COAST

Regional Water Quality Control Board: SF

RWQCB Definition: SAN FRANCISCO BAY

Site Access Controlled : C

Listed In Haz Wst & Substncs Sites List (CORTESE) Not reported Date Hazard Ranked:

GW Contamination Suspected:

Wot reported

Not reported

Of Sources Contributing To Contamination:

0.00000

Lat/Long: 0.00000° 0.00000″ / 0.00000° 0.00000″ / 0.00000° 0.00000″

Direction Lat:

Direction Long:

Not reported

State Assembly Distt Code:

Not reported

Not reported

Not reported

Not reported

Not reported

Identifying Code: EPA

ID Value: CAD980736094

Other ID Desc: EPA IDENTIFICATION NUMBER

Alternate Name(s): MILLER AND GIBSON INDUSTRIAL PUMPING

PRESTON PIPELINE,INC. PRESTON PIPELINE INC.

Address(es): 151 BOTHELO AVE MILPITAS, CA 95035

Background Info: Not reported

Facility Id:

AWP Activities Code:

DTSC Site Activity Code:

Activity Code Def:

DISCOVERY

AWP Activity Id:

Not reported

Dt Activity Due For Completion:

Not reported

Revised Due Date:

Not reported

Date Activity Completed: 10121983
Est # Of Person-years To Complete: 0.00000
Est. Size Of An Activity Code: Not reported
Site Status When Activity Commitment Made: REFOA

Status Code Definition: PROPERTY/SITE REFERRED TO ANOTHER AGENCY

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

EPA ID Number

MILLER GIBSON INDUSTRIAL PUMPING (Continued)

S101482391

Cubic Yards Of Solids Removed At Completion: 0.00000 0.00000 Gallons Of Liquid Removed Upon Completion: Cubic Yards Of Solids Treated Upon Completion: 0.00000 Actvty Deleted Via Commitmnt/Completes Screen: Not reported Facility Id: 43490054 AWP Activities Code: 2.00000 DTSC Site Activity Code: SS Activity Code Def: Not reported

Activity Code Def:

AWP Activity Id:

Not reported

O6091987

Est # Of Person-years To Complete:

Not reported

O6091987

Size Of An Activity Code:

Not reported

Not reported

Not reported

REFOA

Status Code Definition: PROPERTY/SITE REFERRED TO ANOTHER AGENCY

0.00000 Cubic Yards Of Solids Removed At Completion: Gallons Of Liquid Removed Upon Completion: 0.00000 Cubic Yards Of Solids Treated Upon Completion: 0.00000 Actvty Deleted Via Commitmnt/Completns Screen: Not reported Facility Id: 43490054 AWP Activities Code: 3.00000 DTSC Site Activity Code: SS Activity Code Def: Not reported AWP Activity Id: Not reported Dt Activity Due For Completion:

Dt Activity Due For Completion:

Revised Due Date:

Not reported
Not reported
03101989
Est # Of Person-years To Complete:
0.00000
Est. Size Of An Activity Code:
Not reported
Site Status When Activity Commitment Made:
REFOA

Status Code Definition : PROPERTY/SITE REFERRED TO ANOTHER AGENCY

Cubic Yards Of Solids Removed At Completion: 0.00000
Gallons Of Liquid Removed Upon Completion: 0.00000
Cubic Yards Of Solids Treated Upon Completion: 0.00000
Activty Deleted Via Commitment/Completens Screen: Not reported

Special Program Code: Not reported Special Program: Not reported Comments Date: 01011979

Comments: INSPECTION(FED) COMPLI. PCB STORAGE FAC.

INSPECTION(LOCAL) FD, SAN JOSE/SANTA CLARA WATER POLL CONT

SINCE 1980. ON CORTESE LIST

SOURCE ACT: R.MILLER,12/85 - INDUST WST T/C W/B.WEBSTER,FD-ONSITE DISP OF GREASE PUMPING SERVICE,TRANSP HZD LIQ WASTES.

TRAP WSTS. SUBMIT TO EPA

SUSPECTED OF THE DISP OF HIGHLY CONTAM. SUBSTANCES INTO SANITARY SEWER FROM THE

MILPITAS SITE.

VIOLATION DETECTED CITY. HIGHLY CONTMN SUBSTANCES DISCH TO

SANIT SEWER AT 151 BOTHELO.

Site Screening Done: EPA Federal Investigation Team conducted Screening Site Inspection; recommends TSCA and Santa Clara County Environmental Health inspections; NFA

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s)

EPA ID Number

MILLER GIBSON INDUSTRIAL PUMPING (Continued)

S101482391

for Cercla. Not reported

Preston Pipeline has three permanent TSD's # CAL000030516,

CAL 000066107, and CAL000071854

SITE SCREENING DONE ON EPA'S CERCLIS. STATE PA DONE 2/86.

REPORTED FOR PROP65

ENFORCEMENT(OTHER) EPA. NOTIS OF NO-COMPLI. INADEQUATE PCB

STORAGE.

FACILITY IDENTIFIED ID FROM ERRIS

FACILITY DRIVE-BY ASAP. NOW PRESTON PIPELINE INC ON SITE.

PRESENTLY USE AS STORAGE FAC FOR CONSTR MATL.EVIDENCE OF ONSITE DISP OF SEWAGE.
DISP OF SEWAGE(CONVER W/ FRANK WEUSE-

WITNESSED ONSITE DISP OF WST LIQ).

HAZNET:

Gepaid: CAL000071854
TSD EPA ID: CAT080014079
Gen County: Santa Clara

Tsd County: 7 Tons: .4000

Waste Category: Other organic solids
Disposal Method: Transfer Station
Contact: MICHAEL D PRESTON
Telephone: (408) 262-1418
Mailing Address: 151 BOTHELO AVE

MILPITAS, CA 95035 - 5325

County Santa Clara

Gepaid: CAL000071854
TSD EPA ID: CAT080022148
Gen County: Santa Clara
Tsd County: San Bernardino

Tons: .4000

Waste Category: Unspecified oil-containing waste

Disposal Method: Transfer Station
Contact: MICHAEL D PRESTON
Telephone: (408) 262-1418
Mailing Address: 151 BOTHELO AVE

MILPITAS, CA 95035 - 5325

County Santa Clara

Gepaid: CAL000071854
TSD EPA ID: CAD088838222
Gen County: Santa Clara
Tsd County: Santa Cruz
Tons: .3961

Waste Category: Aqueous solution with 10% or more total organic residues

Disposal Method: Recycler

Contact: MICHAEL D PRESTON
Telephone: (408) 262-1418
Mailing Address: 151 BOTHELO AVE

MILPITAS, CA 95035 - 5325

County Santa Clara

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

EPA ID Number

MILLER GIBSON INDUSTRIAL PUMPING (Continued)

S101482391

Gepaid: CAL000071854
TSD EPA ID: CAD059494310
Gen County: Santa Clara
Tsd County: Santa Clara
Tons: .7500

Waste Category: Unspecified oil-containing waste

Disposal Method: Disposal, Other

Contact: MICHAEL D PRESTON
Telephone: (408) 262-1418
Mailing Address: 151 BOTHELO AVE

MILPITAS, CA 95035 - 5325

County Santa Clara

Gepaid: CAL000071854
TSD EPA ID: CAD059494310
Gen County: Santa Clara
Tsd County: Santa Clara
Tons: .2293

Waste Category: Unspecified organic liquid mixture

Disposal Method: Transfer Station

Contact: MICHAEL D PRESTON Telephone: (408) 262-1418 Mailing Address: 151 BOTHELO AVE

MILPITAS, CA 95035 - 5325

County Santa Clara

The CA HAZNET database contains 16 additional records for this site.

Please click here or contact your EDR Account Executive for more information.

Discovery Date:

Imaged:

Not reported

No

SLIC Region 2:

Facility ID: 43S0739 Region: 2

Facility Status: Inactive Not reported Staff: Not reported Not reported

Last Site Update: 03/16/1988 NPL Status: Not an NPL site

Case List: SLIC

Date Closed: Not reported
Abate Method: Not reported

Abate Method: Not reported Substance: Not reported Case Type: NT Sample Date: Not reported

Contamination: Not reported RWQCB

Contamination Level:

Number of Municipal Wells Contaminated by Site:

Number of Private Wells Contaminated by Site:

Soil Removal or Contaminant Action Started:

Soil Removal or Contaminant Action Completed:

On-Site Groundwater Extraction or Containment is Needed:

On-Site Groundwater Extraction or Containment Started:

Off-Site Groundwater Extraction or Containment is Needed:

Off-Site Groundwater Extraction or Containment Started:

Length of Contamination Plume (Feet):

Depth of Contamination Plume (Feet):

Wells Closed Due To Contamination of Site:

Date of Wells Closure:

Nearest Public or Private Drinking Water Well (Feet): 0

Under Jurisdiction of Lead Agency Date:

Latitude/Longitude: 37 / -122

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s)

EPA ID Number

MILLER GIBSON INDUSTRIAL PUMPING (Continued)

Flow Rate: 0
Flow Date:

Percent of Contaminants Contained: 0

Contaminant Type:

EPA ID:

Stages of Site Investigation Process Initiated:

Begun Characterization: No Completed Characterization: Nο Begun Remediation: No Completed Remediation: No Submitted Remediation Plan: No Approved Remediation Plan: No Begun Final Remedial Action: No Completed Final Remedial Action: No

Facility Desc: TRANSPORTER OF HAZARDOUS WASTE

Comment: Not reported

K46 USA PET OLEUM #102 LUST \$105032877 SSW 200 SERRA WY N/A

1/4-1/2 MILPITAS, CA 95035 1956 ft.

Site 1 of 2 in cluster K Relative:

Higher

State LUST:

Actual: (

Cross Street: Not reported

Qty Leaked: 0

Case Number Not reported

Reg Board: 2
Chemical: Gasoline
Lead Agency: Local Agency: 43099L

Case Type: Other ground water affected

Status: Remedial action (cleanup) Underway

Review Date: Not reported Confirm Leak: Workplan: 8/22/84 0:00 Prelim Assess: Pollution Char: Not reported Remed Plan:

Remed Action: 9/8/94 0:00
Monitoring: Not reported
Close Date: Not reported
Release Date: 08/22/1984
Cleanup Fund Id: Not reported

Discover Date: //

Enforcement Dt: Not reported

Enf Type: SEL

Enter Date : Not reported Funding: Not reported

Staff Initials: GC

How Discovered: Not reported
How Stopped: Not reported
Interim: Not reported
Leak Cause: Not reported
Leak Source: Not reported
MTBE Date: 11/20/97 0:00
Max MTBE GW: 1800 Parts per Billion

MTBE Tested: MTBE Detected. Site tested for MTBE & MTBE detected

Priority: Not reported

Local Case # : 0
Beneficial: MUN
Staff : ZSC

TC1182143.2s Page 45

Not reported

8/22/84 0:00

Not reported

S101482391

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s)

EPA ID Number

USA PET OLEUM #102 (Continued)

S105032877

GW Qualifier:

Max MTBE Soil: Not reported Soil Qualifier: Not reported Hydr Basin #: Not reported Operator: Not reported Oversight Prgm: LUST Review Date: Not reported

Stop Date: //

Work Suspended: Not reported
Responsible PartyGeorge Donovan
RP Address: PO Box 11100
Global Id: T0608501549
Org Name: Not reported
Contact Person: Not reported
MTBE Conc: Not reported
Mtbe Fuel: Not reported

Water System Name: Not reported Well Name: Not reported

Distance To Lust: 0

Waste Discharge Global ID: Not reported Waste Disch Assigned Name: Not reported

LUST Region SC:

Region: Santa Clara

Closed Date: // SCVWD Id: 06S1E07F03
Region Code: 2 Oversight Agency: SCVWD

Date Listed: 01/01/1985

K47 SSW 200 SERRA WAY 1/4-1/2 MILPITAS, CA 95035

1956 ft.

Site 2 of 2 in cluster K

Relative: Higher

LUST Region 2:

 Region:
 2

 Actual:
 Case Number:
 06S1E07F03f

 18 ft.
 Facility Id:
 Not reported

8 ft. Facility Id: Not reported
Facility Status: Remedial action (cleanup) Underway

How Discovered: Not reported Leak Cause: Not reported Leak Source: Not reported Date Leak Confirmed: Not reported Not reported Prelim. Site Assesment Wokplan Submitted: Preliminary Site Assesment Began: 8/22/1984 Pollution Characterization Began: 2/1/1987 Pollution Remediation Plan Submitted: Not reported 9/8/1994 Date Remediation Action Underway: Date Remediation Action Underway: Not reported

CORTESE:

Region: CORTESE Fac Address 2: 200 SERRA WY

CHMIRS:

OES Control Number: 9116411
Chemical Name: Not reported
Extent of Release: Not reported
Property Use: Mercantile, Business

Incident Date: 09-APR-91

CHMIRS

Cortese

LUST

S100698229

N/A

Direction
Distance
Distance (ft.)
Elevation Site

EDR ID Number
Database(s) EPA ID Number

(Continued) S100698229

Date Completed: 09-APR-91 Time Completed: 1620 Agency Id Number: 43030 Agency Incident Number: 91-7439F OES Incident Number: 9116411 Time Notified: 1548 Surrounding Area: 962 Estimated Temperature: 65 Property Management: More Than Two Substances Involved?: Ν

Special Studies 1 :Not reportedSpecial Studies 2 :Not reportedSpecial Studies 3 :Not reportedSpecial Studies 4 :Not reportedSpecial Studies 5 :Not reportedSpecial Studies 6 :Not reported

Responding Agency Personel # Of Injuries: 0
Responding Agency Personel # Of Fatalities: 0
Resp Agncy Personel # Of Decontaminated: 0
Others Number Of Decontaminated: 0
Others Number Of Injuries: 0
Others Number Of Fatalities: 0

Vehicle Make/year : Not reported
Vehicle License Number : Not reported
Vehicle State : Not reported
Vehicle Id Number : Not reported
CA/DOT/PUC/ICC Number : Not reported
Company Name : Not reported

Reporting Officer Name/ID: CAPT. MICHAEL LOPEZ C12

Report Date : 09-APR-91 Comments : Yes

408 942-2388 Facility Telephone Number: Waterway Involved: Not reported Waterway: Not reported Spill Site: Not reported Cleanup By: Not reported Containment: Not reported What Happened: Not reported Type: Not reported Other: Not reported Chemical 1: Not Reported Chemical 2: Not Reported Chemical 3: Not Reported Not reported Date/Time: Not reported Evacuations: 9990599 **OES Control Number:** Chemical Name: Not reported Extent of Release: Not reported Property Use: Private Road Incident Date: 14-MAY-88 14-MAY-88 Date Completed: Time Completed: 2025 43030 Agency Id Number: Agency Incident Number: 88-9963F **OES Incident Number:** 9990599 Time Notified: 1945

500

Surrounding Area:

Direction
Distance
Distance (ft.)
Elevation Site

Distance (ft.)

Elevation Site

EDR ID Number

Database(s)

EPA ID Number

(Continued) S100698229

Estimated Temperature : 70
Property Management : P
More Than Two Substances Involved? : N

Not reported Special Studies 1: Special Studies 2: Not reported Special Studies 3: Not reported Special Studies 4: Not reported Special Studies 5: Not reported Special Studies 6: Not reported Responding Agency Personel # Of Injuries : Not reported Responding Agency Personel # Of Fatalities: Not reported Resp Agncy Personel # Of Decontaminated: Not reported Others Number Of Decontaminated: Not reported Others Number Of Injuries: Not reported Others Number Of Fatalities: Not reported Vehicle Make/year: Not reported Vehicle License Number: Not reported Vehicle State: Not reported Vehicle Id Number: Not reported CA/DOT/PUC/ICC Number: Not reported Company Name: Not reported Reporting Officer Name/ID: JIM PALMER / C14

Report Date : 03-OCT-88

Comments: No

Facility Telephone Number: 408 945-5785 Not reported Waterway Involved: Waterway: Not reported Spill Site: Not reported Cleanup By: Not reported Containment: Not reported What Happened: Not reported Type: Not reported Other: Not reported Chemical 1: Not Reported Not Reported Chemical 2: Not Reported Chemical 3: Not reported Date/Time: Evacuations: Not reported OES Control Number: 9990611 Chemical Name: Not reported Not reported Extent of Release:

Property Use: Mercantile, Business

Incident Date: 22-FEB-88 22-FEB-88 Date Completed: Time Completed: 932 Agency Id Number: 43030 Agency Incident Number: 88-3839F OES Incident Number: 9990611 Time Notified: 929 936 Surrounding Area: Estimated Temperature: 60 Property Management: More Than Two Substances Involved?: Ν

Special Studies 1 : Not reported Special Studies 2 : Not reported Special Studies 3 : Not reported Special Studies 4 : Not reported Special Studies 4 : Not reported

MAP FINDINGS Map ID Direction

Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

(Continued) S100698229

Special Studies 5: Not reported Not reported Special Studies 6: Responding Agency Personel # Of Injuries : Not reported Responding Agency Personel # Of Fatalities: Not reported Resp Agncy Personel # Of Decontaminated: Not reported Others Number Of Decontaminated: Not reported Others Number Of Injuries: Not reported Others Number Of Fatalities: Not reported Vehicle Make/year: Not reported Vehicle License Number: Not reported Vehicle State: Not reported Not reported Vehicle Id Number: CA/DOT/PUC/ICC Number: Not reported Company Name: Not reported Reporting Officer Name/ID: BROWN / 19C12

Report Date: 22-FEB-88 Comments: No

408 945-5785 Facility Telephone Number: Waterway Involved: Not reported Waterway: Not reported Spill Site: Not reported Cleanup By: Not reported Containment: Not reported What Happened: Not reported Not reported Type: Other: Not reported Chemical 1: Not Reported Chemical 2: Not Reported Not Reported Chemical 3: Date/Time: Not reported Not reported Evacuations:

SHAPELL INDUSTRIES OF N CALIFORNIA RCRIS-SQG 48 **ENE 100 N MILPITAS BLVD**

1/4-1/2 MILPITAS, CA 95035

2092 ft.

Relative: Higher

18 ft.

RCRIS:

Actual: Owner:

(408) 946-1550

SHAPELL INDUSTRIES

EPA ID: CAR000001586 AL BALOGH Contact: (408) 946-1550

Classification: **Small Quantity Generator**

TSDF Activities: Not reported Violation Status: No violations found

TC1182143.2s Page 49

1000985049 CAR000001586

FINDS

Cortese **HAZNET**

UST

LUST

MAP FINDINGS Map ID

Direction Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

SHAPELL INDUSTRIES OF N CALIFORNIA (Continued)

1000985049

FINDS:

Other Pertinent Environmental Activity Identified at Site:

National Toxics Inventory (NTI)

Resource Conservation and Recovery Act Information system (RCRAINFO)

State LUST:

Cross Street: Not reported

Qty Leaked:

Case Number Not reported

Reg Board:

Chemical: Gasoline Local Agency Lead Agency: Local Agency: 43099L

Case Type: Other ground water affected

Status: Case Closed

Review Date: Not reported Confirm Leak: Not reported 6/16/86 0:00 Prelim Assess: 6/16/86 0:00 Workplan: Pollution Char: Not reported Remed Plan: Not reported

Remed Action: Not reported Monitoring: Not reported Close Date: 3/7/00 0:00 Release Date: 07/23/1986 Cleanup Fund Id: Not reported Discover Date: //

Enforcement Dt: Not reported

NOR Enf Type: Enter Date: Not reported Funding: Not reported

Staff Initials: CK

How Discovered: Not reported How Stopped: Not reported Interim: Not reported Leak Cause: Not reported Leak Source: Not reported MTBE Date: 9/30/98 0:00

Max MTBE GW: 25000 Parts per Billion

MTBE Detected. Site tested for MTBE & MTBE detected MTBE Tested:

Priority: Not reported

Local Case #: Beneficial: MUN Staff: ZSC GW Qualifier:

Max MTBE Soil: Not reported Soil Qualifier: Not reported Hydr Basin #: Not reported Not reported Operator: Oversight Prgm: LUST Review Date: Not reported Stop Date:

Work Suspended :Not reported Responsible PartyAl Balough RP Address: PO Box 361169 Global Id: T0608501237 Org Name: Not reported Contact Person: Not reported MTBE Conc: Not reported Mtbe Fuel: Not reported

Map ID MAP FINDINGS
Direction

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

EPA ID Number

SHAPELL INDUSTRIES OF N CALIFORNIA (Continued)

1000985049

Water System Name: Not reported Well Name: Not reported

Distance To Lust: 0

Waste Discharge Global ID: Not reported Waste Disch Assigned Name: Not reported

LUST Region 2:

Region:

Case Number: 06S1E06R01f Facility Id: Not reported Facility Status: Case Closed How Discovered: Not reported Leak Cause: Not reported Leak Source: Not reported Date Leak Confirmed: Not reported Prelim. Site Assesment Wokplan Submitted: Not reported 6/16/1986 Preliminary Site Assesment Began: 2/5/1990 Pollution Characterization Began: Pollution Remediation Plan Submitted: Not reported Date Remediation Action Underway: Not reported Date Remediation Action Underway: Not reported

LUST Region SC:

Region: Santa Clara Closed Date: 03/07/2000

Closed Date: 03/07/2000 SCVWD Id: 06S1E06R01 Region Code: 2 Oversight Agency: SCVWD

Date Listed: 01/01/1987

HAZNET:

Gepaid: CAR000001586
TSD EPA ID: CAD009466392
Gen County: Santa Clara
Tsd County: 7

Tons: 10.0000

Waste Category: Other empty containers 30 gallons or more

Disposal Method: Not reported

Contact: SHAPELL INDUSTRIES

Telephone: (408) 946-1550

Mailing Address: 100 N MILPITAS BLVD

MILPITAS, CA 95035 - 4401

County Santa Clara

Gepaid: CAR000001586
TSD EPA ID: CAD009466392
Gen County: Santa Clara

Tsd County: 7

Tons: 10.0000

Waste Category: Other empty containers 30 gallons or more

Disposal Method: Recycler

Contact: SHAPELL INDUSTRIES
Telephone: (408) 946-1550
Mailing Address: 100 N MILPITAS BLVD

MILPITAS, CA 95035 - 4401

County Santa Clara

MAP FINDINGS Map ID

Direction Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

Confirm Leak:

Prelim Assess:

Remed Plan:

Not reported

5/17/82 0:00

Not reported

SHAPELL INDUSTRIES OF N CALIFORNIA (Continued)

1000985049

S103880600

N/A

LUST

CAR000001586 Gepaid: WAD009477175 TSD EPA ID: Gen County: Santa Clara Tsd County: 99

Tons: .5000

Waste Category: Other organic solids

Disposal Method: Recycler

SHAPELL INDUSTRIES Contact: Telephone: (408) 946-1550 Mailing Address: 100 N MILPITAS BLVD MILPITAS, CA 95035 - 4401

Santa Clara

County

CORTESE:

CORTESE Region: Fac Address 2: Not reported

State UST:

Facility ID: 43-011-850089-0

Region: STATE

Local Agency: Milpitas, Santa Clara County

L49 **CHEV ON #9-2435** SSW 342 W CALAVERAS BLVD 1/4-1/2 MILPITAS, CA 95035 2193 ft.

Site 1 of 3 in cluster L

Relative:

State LUST: Higher

Cross Street: Not reported Actual:

Qty Leaked: 18 ft.

Case Number Not reported

Reg Board:

Chemical: Gasoline Lead Agency: Local Agency Local Agency: 43099L

Other ground water affected Case Type:

Status: Case Closed Review Date: Not reported Workplan: 5/17/82 0:00 Pollution Char: Not reported Remed Action: Not reported

Monitoring: Not reported Close Date: 10/10/96 0:00 Release Date: 11/24/1987 Cleanup Fund Id: Not reported

Discover Date: //

Enforcement Dt: Not reported

Enf Type: NOR Enter Date: Not reported Funding: Not reported

Staff Initials:

How Discovered: Not reported Not reported How Stopped: Interim: Not reported Leak Cause: Not reported Leak Source: Not reported MTBE Date: Not reported Max MTBE GW: Not reported

TC1182143.2s Page 52

MAP FINDINGS Map ID

Direction Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

CHEV ON #9-2435 (Continued)

MTBE Tested: Site NOT Tested for MTBE.Includes Unknown and Not Analyzed.

Priority: Not reported

Local Case #: 0 Beneficial: MUN Staff: ZSC GW Qualifier: Not reported

Max MTBE Soil: Not reported Soil Qualifier: Not reported Hydr Basin #: Not reported Operator: Not reported Oversight Prgm: LUST Review Date: Not reported

Stop Date:

Work Suspended :Not reported

Responsible PartyMargaret Donnovan, Trustee

RP Address: PO Box 5004 Global Id: T0608500377 Org Name: Not reported Contact Person: Not reported MTBE Conc: Not reported Mtbe Fuel: Not reported

Water System Name: Not reported Well Name: Not reported Distance To Lust: 0 Waste Discharge Global ID: Not reported

Waste Disch Assigned Name: Not reported

LUST Region SC:

Region: Santa Clara

Closed Date: 10/10/1996 SCVWD Id: 06S1E07E01 2 Oversight Agency: SCVWD Region Code:

Date Listed: 01/01/1988

S105027752 L50 **CHEVRON** Cortese SSW 342 CALAVERAS BLVD W

N/A

S103880600

1/4-1/2 MILPITAS, CA 95035 2193 ft.

Site 2 of 3 in cluster L

Relative: Higher

CORTESE:

Region:

CORTESE

Fac Address 2: 342 CALAVERAS BLVD W Actual:

18 ft.

L51 HIST UST U001601433 92435 SSW 342 W CALAVERAS BLVD LUST N/A

1/4-1/2 MILPITAS, CA 95035

2193 ft.

Site 3 of 3 in cluster L

Relative: Higher

LUST Region 2:

Region:

06S1E07E01f Actual: Case Number: 18 ft.

Not reported Facility Id: Facility Status: Case Closed How Discovered: Not reported Leak Cause: Not reported Leak Source: Not reported Date Leak Confirmed: Not reported Prelim. Site Assesment Wokplan Submitted: Not reported

TC1182143.2s Page 53

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s)

EPA ID Number

92435 (Continued) U001601433

Preliminary Site Assesment Began: 5/17/1982
Pollution Characterization Began: 7/21/1987
Pollution Remediation Plan Submitted: Not reported
Date Remediation Action Underway: Not reported
Date Remediation Action Underway: Not reported

UST HIST:

Facility ID: 62257 Facility Status: Not reported Total Tanks: 5 Region: STATE Owner Name: CHEVRON U.S.A. INC. Box Number: Not reported

Owner Address: 575 MARKET

SAN FRANCISCO, CA 94105

52 CASTLEMAN AND HASKELL CA SLIC S101542411
NNW 726/738 CALERO ST N/A

Not reported

Not reported

1/4-1/2 MILPITAS, CA

2334 ft.

Relative: SLIC Region 2:

Lower Facility ID: 43S0366
Region: 2

Actual: Facility Status: Inactive
13 ft. Staff: Not reported

Last Site Update: 10/31/1989

NPL Status: Not an NPL site Discovery Date: 10/12/1989

Case List: SLIC Imaged: No

Date Closed: Not reported

Abate Method: Not reported Substance:

Abate Method: Not reported Substance: Not reported Case Type: NT Sample Date: 10/12/1989

0

Contamination: SURFACE SPILL & WELL CONTAMINATION

Lead: RWQCB

Contamination Level: 193300PPM

Number of Municipal Wells Contaminated by Site: 0
Number of Private Wells Contaminated by Site: 0

Soil Removal or Contaminant Action Started: Soil Removal or Contaminant Action Completed:

On-Site Groundwater Extraction or Containment is Needed: Yes

On-Site Groundwater Extraction or Containment Started:

Off-Site Groundwater Extraction or Containment is Needed: Not Determined

Off-Site Groundwater Extraction or Containment Started:
Length of Contamination Plume (Feet):

Depth of Contamination Plume (Feet):

0

Wells Closed Due To Contamination of Site:

Date of Wells Closure:

Nearest Public or Private Drinking Water Well (Feet): 0

Under Jurisdiction of Lead Agency Date: 10/31/89
Latitude/Longitude: 0 / 0
Flow Rate: 0
Flow Date:

Percent of Contaminants Contained:

Contaminant Type:

EPA ID:

Stages of Site Investigation Process Initiated:

Begun Characterization:

Completed Characterization:

No
Begun Remediation:

Completed Remediation:

No
Submitted Remediation Plan:

No
Approved Remediation Plan:

No

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

EPA ID Number

CASTLEMAN AND HASKELL (Continued) S101542411

Begun Final Remedial Action:

Completed Final Remedial Action:

No

Facility Desc: RESIDENCE Comment: Not reported

M53 MILPITAS - BERRYESSA PUMP STA. UST U003782794
NNE 731 FOLSOM CIR LUST N/A

Confirm Leak:

Prelim Assess:

Remed Plan:

Not reported

Not reported

Not reported

1/4-1/2 MILPITAS, CA 95035

2379 ft.

Site 1 of 2 in cluster M

Relative: Lower State LUST:

Cross Street: Not reported

Actual: Qty Leaked: 0

12 ft. Case Number Not reported

Case Number Not reported Reg Board: 2

Reg Board: 2
Chemical: Diesel
Lead Agency: Local Agency 43099L
Case Type: Soil only
Status: Case Closed
Review Date: Workplan: Vot reported

Pollution Char: Not reported Remed Action: Not reported Monitoring: Not reported Close Date: 3/10/99 0:00 Release Date: 11/05/1998

Release Date: 11/05/1998 Cleanup Fund Id: Not reported

Discover Date: //

Enforcement Dt: Not reported
Enf Type: Not reported
Enter Date: Not reported
Funding: Not reported

Staff Initials: LD

How Discovered: Not reported How Stopped: Not reported Interim: Not reported Leak Cause: Not reported Leak Source: Not reported MTBE Date: Not reported Max MTBE GW: Not reported

MTBE Tested: Not Required to be Tested.

Priority: Not reported

Local Case # : 0
Beneficial: MUN
Staff : ZSC
GW Qualifier : Not re

GW Qualifier: Not reported
Max MTBE Soil: Not reported
Soil Qualifier: Not reported
Hydr Basin #: Not reported
Operator: Not reported
Oversight Prgm: LUST
Review Date: Not reported

Stop Date : //

Work Suspended :Not reported Responsible PartyCity of Milpitas

RP Address: 455 East Calaveras Blvd

Global Id: T0608502139

TC1182143.2s Page 55

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

EPA ID Number

MILPITAS - BERRYESSA PUMP STA. (Continued)

U003782794

Org Name: Not reported
Contact Person: Not reported
MTBE Conc: Not reported
Mtbe Fuel: Not reported

Water System Name: Not reported Well Name: Not reported

Distance To Lust: 0

Waste Discharge Global ID: Not reported Waste Disch Assigned Name: Not reported

LUST Region 2:

Region: 2

06S1E06L01f Case Number: Facility Id: Not reported Facility Status: Case Closed How Discovered: Not reported Leak Cause: Not reported Leak Source: Not reported Date Leak Confirmed: Not reported Prelim. Site Assesment Wokplan Submitted: Not reported Preliminary Site Assesment Began: Not reported Pollution Characterization Began: Not reported Pollution Remediation Plan Submitted: Not reported Date Remediation Action Underway: Not reported Date Remediation Action Underway: Not reported

LUST Region SC:

Region: Santa Clara Closed Date: 03/10/1999

 Closed Date:
 03/10/1999
 SCVWD Id:
 06S1E06L01

 Region Code:
 2
 Oversight Agency:
 SCVWD

Date Listed: 03/10/1999

State UST:

Facility ID: 43-011-058174-0

Region: STATE

Local Agency: Milpitas, Santa Clara County

M54 MILPITAS BERRYESSA PUMP S Cortese S103890999

NNE 731 FOLSOM N/A

1/4-1/2 MILPITAS, CA 95035

2379 ft.

Site 2 of 2 in cluster M

Relative: Lower

CORTESE:

Region: CORTESE

Actual: Fac Address 2: Not reported 12 ft.

 N55
 ABBOTT AUTO SERVICE
 HAZNET
 \$103880601

 SW
 97 S ABBOTT AVE
 LUST
 N/A

1/4-1/2 MILPITAS, CA 95035

2548 ft.

Site 1 of 2 in cluster N

Relative: Higher

State LUST:

Cross Street: Not reported

Actual: Qty Leaked: 0

17 ft. Case Number Not reported

Reg Board: 2

Chemical: Gasoline
Lead Agency: Local Agency

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s)

EPA ID Number

ABBOTT AUTO SERVICE (Continued)

S103880601

Local Agency: 43099L

Case Type: Other ground water affected Status: Pollution Characterization

Review Date:Not reportedConfirm Leak:Not reportedWorkplan:4/10/90 0:00Prelim Assess:4/10/90 0:00Pollution Char:Not reportedRemed Plan:Not reported

Remed Action: Not reported Monitoring: Not reported Close Date: Not reported Release Date: 05/05/1989 Cleanup Fund Id: Not reported

Discover Date: //

Enforcement Dt: Not reported

Enf Type: SEL

Enter Date : Not reported Funding: Not reported

Staff Initials: CT

How Discovered: Not reported How Stopped: Not reported Interim: Not reported Leak Cause: Not reported Leak Source: Not reported MTBE Date: 1/16/97 0:00

Max MTBE GW: 53000 Parts per Billion

MTBE Tested: MTBE Detected. Site tested for MTBE & MTBE detected

Priority: Not reported

Local Case #: 0
Beneficial: MUN
Staff: ZSC
GW Qualifier: =

Max MTBE Soil: Not reported Soil Qualifier: Not reported Hydr Basin #: Not reported Operator: Not reported Oversight Prgm: LUST Review Date: Not reported

Stop Date: //

Work Suspended :Not reported
Responsible PartySteve Pao
RP Address: PO Box 6549
Global Id: T0608500260
Org Name: Not reported
Contact Person: Not reported
MTBE Conc: Not reported
Mtbe Fuel: Not reported

Water System Name: Not reported Well Name: Not reported

Distance To Lust:

Waste Discharge Global ID: Not reported Waste Disch Assigned Name: Not reported

LUST Region SC:

Region: Santa Clara

Closed Date: // SCVWD Id: 06S1E07E03
Region Code: 2 Oversight Agency: SCVWD

Date Listed: 01/01/1990

MAP FINDINGS Map ID

Direction Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

ABBOTT AUTO SERVICE (Continued)

S103880601

S101594396

N/A

CA FID UST

HAZNET

CA WDS

LUST

HAZNET:

CAL000251491 Gepaid: TSD EPA ID: Not reported Gen County: Santa Clara Tsd County: San Mateo 0.31 Tons:

Waste Category: Unspecified organic liquid mixture

Disposal Method: Recycler Contact: THOI PHAM Telephone: (408) 946-8229 Mailing Address: 3003 MAURICIA AVE SANTA CLARA, CA 95051

County Not reported

N56 **BP OIL FACILITY #11223** SW 97 S ABBOTT AVE 1/4-1/2 MILPITAS, CA 95035 2548 ft.

Site 2 of 2 in cluster N

Relative: Higher

LUST Region 2:

Region: Actual: Case Number:

06S1E07E03f 17 ft. Facility Id: Not reported

Facility Status: Pollution Characterization

How Discovered: Not reported Leak Cause: Not reported Leak Source: Not reported Not reported Date Leak Confirmed: Prelim. Site Assesment Wokplan Submitted: Not reported Preliminary Site Assesment Began: 4/10/1990 Pollution Characterization Began: 4/10/1990 Pollution Remediation Plan Submitted: Not reported Date Remediation Action Underway: Not reported Date Remediation Action Underway: Not reported

HAZNET:

Gepaid: CAL000035290 CAD083166728 TSD EPA ID: Gen County: Santa Clara Tsd County: Stanislaus .2293 Tons:

Waste Category: Unspecified oil-containing waste

Disposal Method: Recycler

TOSCO NORTHWEST COMPANY Contact:

(000) 000-0000 Telephone: Mailing Address: **601 UNION STREET**

SEATTLE, WA 98101

County Santa Clara Map ID MAP FINDINGS
Direction

Direction
Distance
Distance (ft.)
Elevation

Distance (ft.)

Elevation Site

EDR ID Number

Database(s)

EPA ID Number

BP OIL FACILITY #11223 (Continued)

S101594396

FID:

Facility ID: 43000412 Regulate ID: 00039532

Reg By: Active Underground Storage Tank Location

Cortese Code: Not reported SIC Code: Not reported Status: Active Facility Tel: (408) 262-9839

Mail To: Not reported

2868 PROSPECT PARK DR

MILPITAS, CA 95035

Contact: Not reported Contact Tel: Not reported DUNs No: Not reported NPDES No: Not reported Creation: 10/22/93 Modified: 00/00/00

EPA ID: Not reported Comments: Not reported

WDS:

Facility ID: San Francisco Bay 438498002

Facility Contact Scott Robinson Facility Telephone (510) 874-3280 SIC Code: 5541 SIC Code 2: Not reported

Agency Name: BP OIL COMPANY

Agency Address: 295 S.W. 41st ST BLDG.13 STE N

RENTON 98055 - 4331

Agency Contact: SCOTT HOOTON Agency Phone: 0

Design Flow: 0.0144 Million Gal/Day Baseline Flow: 0.0144 Million Gal/Day
Facility Type: Other - Does not fall into the category of Municipal/Domestic, Industrial, Agricultural or

Solid Waste (Class I, II or III)

Facility Status: Active - Any facility with a continuous or seasonal discharge that is under Waste

Discharge Requirements.

Agency Type: Private

Waste Type: Contaminated Ground Water - Hazardous/Influent or Solid Wastes that contain toxic,

corrosive, ignitable or reactive substances and must be managed according to applicable

DOHS standards.

Threat to Water: Moderate Threat to Water Quality. A violation could have a major adverse impact on

receiving biota, can cause aesthetic impairment to a significant human population, or render unusable a potential domestic or municipal water supply. Awsthetic impairment would

include nuisance from a waste treatment facility.

Complexity: Category B - Any facility having a physical, chemical, or biological waste treatment

system (except for septic systems with subsurface disposal), or any Class II or III disposal site, or facilities without treatment systems that are complex, such as marinas

with petroleum products, solid wastes, and sewage pump out facilities.

Reclamation: No reclamation requirements associated with this facility.

POTW: The POTW Does not have an approved pretreatment program. Some POTWs may have local

pretreatment programs that have not been approved by the regional board and/or EPA.

NPDES Number: CAG912002 The 1st 2 characters designate the state. The remaining 7 are assigned by the

Regional Board

Subregion: 2

57 ARCO #2121 LUST \$102424216 SW 43 \$ ABBOTT AVE N/A

SW 43 S ABBOTT AVE 1/4-1/2 MILPITAS, CA 95035

2608 ft.

Relative: State LUST:

Higher Cross Street: Not reported

Qty Leaked: 0

Actual: Case Number Not reported

18 ft. Reg Board: 2

Chemical: Gasoline
Lead Agency: Local Agency
Local Agency: 43099L

Map ID MAP FINDINGS
Direction

Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s) EPA ID Number

ARCO #2121 (Continued) \$102424216

Case Type: Other ground water affected Status: Pollution Characterization

Review Date:Not reportedConfirm Leak:Not reportedWorkplan:12/23/02 0:00Prelim Assess:12/23/02 0:00Pollution Char:Not reportedRemed Plan:Not reported

Remed Action: Not reported Monitoring: Not reported Close Date: Not reported Release Date: 12/18/2002 Cleanup Fund Id: Not reported

Discover Date: //

Enforcement Dt: Not reported

Enf Type: SEL

Enter Date : Not reported Funding: Not reported

Staff Initials: CT

How Discovered: Not reported
How Stopped: Not reported
Interim: Not reported
Leak Cause: Unknown
Leak Source: Piping
MTBE Date: 11/8/02 0:00

Max MTBE GW: 190000 Parts per Billion

MTBE Tested: MTBE Detected. Site tested for MTBE & MTBE detected

Priority: Not reported

Local Case #: 0
Beneficial: MUN
Staff: BGS
GW Qualifier: =

Max MTBE Soil : Not reported Soil Qualifier : Not reported Hydr Basin #: Not reported Operator : Not reported Oversight Prgm: LUST

Review Date: Not reported

Stop Date : / /

Work Suspended :Not reported Responsible PartyPaul Supple RP Address: PO Box 6549 Global Id: T0608589973 Org Name: Not reported Contact Person: Not reported MTBE Conc: Not reported Mtbe Fuel: Not reported

Water System Name: Not reported Well Name: Not reported

Distance To Lust: 0

Waste Discharge Global ID: Not reported Waste Disch Assigned Name: Not reported

Cross Street: Not reported

Qty Leaked: 0

Case Number Not reported

Reg Board: 2

Chemical: Gasoline Lead Agency: Local Agency Local Agency: 43099L

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s)

EPA ID Number

ARCO #2121 (Continued) \$102424216

Case Type: Other ground water affected

Status:Case ClosedReview Date:Not reportedConfirm Leak:Not reportedWorkplan:6/15/87 0:00Prelim Assess:6/15/87 0:00Pollution Char:Not reportedRemed Plan:Not reported

Remed Action: Not reported Monitoring: Not reported Close Date: 8/15/96 0:00 Release Date: 09/16/1987 Cleanup Fund Id: Not reported

Discover Date: //

Enforcement Dt : Not reported Enf Type: NOR
Enter Date : Not reported Funding: Not reported

Staff Initials: CT

How Discovered: Not reported
How Stopped: Not reported
Interim: Not reported
Leak Cause: Not reported
Leak Source: Not reported
MTBE Date: 12/5/95 0:00
Max MTBE GW: 26 Parts per Billion

MTBE Tested: MTBE Detected. Site tested for MTBE & MTBE detected

Priority: Not reported

Local Case #: 0
Beneficial: MUN
Staff: ZSC
GW Qualifier: =

Max MTBE Soil: Not reported Soil Qualifier: Not reported Hydr Basin #: Not reported Operator: Not reported Oversight Prgm: LUST

Review Date : Not reported

Stop Date : / /

Work Suspended :Not reported
Responsible PartyKyle Christie
RP Address: PO Box 612530
Global Id: T0608500178
Org Name: Not reported
Contact Person: Not reported
MTBE Conc: Not reported
Mtbe Fuel: Not reported

Water System Name: Not reported Well Name: Not reported

Distance To Lust: 0

Waste Discharge Global ID: Not reported Waste Disch Assigned Name: Not reported

LUST Region 2:

Region: 2

Case Number: 06S1W12H01f
Facility Id: Not reported
Facility Status: Case Closed
How Discovered: Not reported
Leak Cause: Not reported
Leak Source: Not reported

Map ID MAP FINDINGS
Direction

Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

EPA ID Number

ARCO #2121 (Continued) \$102424216

Date Leak Confirmed:
Prelim. Site Assesment Wokplan Submitted:
Preliminary Site Assesment Began:
Pollution Characterization Began:
Pollution Remediation Plan Submitted:
Date Remediation Action Underway:
Not reported
Not reported
Not reported
Not reported

Region: 2

Case Number: 06S1W12H02f Facility Id: Not reported

Facility Status: Pollution Characterization

How Discovered: Not reported Leak Cause: Unknown Leak Source: **Piping** Date Leak Confirmed: Not reported Prelim. Site Assesment Wokplan Submitted: Not reported Preliminary Site Assesment Began: 12/23/2002 Pollution Characterization Began: 9/30/2003 Pollution Remediation Plan Submitted: Not reported Date Remediation Action Underway: Not reported Date Remediation Action Underway: Not reported

LUST Region SC:

Region: Santa Clara

 Closed Date:
 08/15/1996
 SCVWD Id:
 06S1W12H01

 Region Code:
 2
 Oversight Agency:
 SCVWD

Date Listed: 01/01/1988

Region: Santa Clara

Closed Date: // SCVWD Id: 06S1W12H02
Region Code: 2 Oversight Agency: SCVWD

Date Listed: 05/20/2003

58 ARCO SERVICE STATION #2121 Notify 65 S100179205 SW 43 SOUTH ABBOTT N/A

SW 43 SOUTH ABBOTT 1/2-1 MILPITAS, CA 93064

2705 ft.

Relative: NOTIFY 65:

Higher Date Reported: Not reported Staff Initials: Not reported

Board File Number: Not reported

Actual: Facility Type: Not reported

19 ft. Discharge Date: Not reported

Incident Description: 93064

MAP FINDINGS - EDR PROPRIETARY HISTORICAL DATABASES

YEAR NAME ADDRESS CITY ST DIR. DIST. ELEV. TYPE

Coal Gas Site Search: No site was found in a search of Real Property Scan's ENVIROHAZ database.

EDR Historical Gas Station & Dry Cleaner Search: No mapped sites were found in EDR's search of the EDR Historical Gas Station & Dry Cleaner Database within 0.250 mile of the Target Property.

ORPHAN SUMMARY

City	EDR ID	Site Name	Site Address	Zip	Database(s)
MILPITAS	94367362	EB 237 AT SOUTH MILPITAS BLVD	EB 237 AT SOUTH MILPITAS BLVD	95035	ERNS
MILPITAS	S103956737	CITY MILPITAS/PUBLIC WORKS	ON CAPITOL AVE AT MAIN ST	95035	HAZNET
MILPITAS	U003948954	MILPITAS - PENNITENCIA PUMP	782 LA HONDA		UST
MILPITAS	93329487	JUST OFF I-80 IN MILPITAS A MILE SO OF	JUST OFF I-80 IN MILPITAS A MILE SO OF	95035	ERNS
		DIXON LANDING ROAD	DIXON LANDING ROAD		
MILPITAS	U001601476	MILPITAS FIRE STATION #3	MIDWICK DR.	95035	HIST UST
MILPITAS	S100183097	MILPITAS GARBAGE DUMP	1/2 MILE SO. OF MILPITAS	95035	REF
MILPITAS	S103946545	MILPITAS SUB STATION	MILPITAS RD. NORTH OF MONTAGUE		HAZNET
MILPITAS	93320991	MILPITAS YARD OF UNION PACIFIC	MILPITAS YARD OF UNION PACIFIC	95035	ERNS
MILPITAS	S103662856	MILPITAS MOWERS, INC.	51 MINI CIRCLE	95035	HAZNET
MILPITAS	94376264	985 MONTAGUE EXPRESSWAY CROSS S. MILPITAS	985 MONTAGUE EXPRESSWAY CROSS S.	95035	ERNS
		BLVD	MILPITAS BLVD		
MILPITAS	1003879376	JONES CHEMICAL	985 MONTAGUE EXPRESSWAY	95035	CERC-NFRAP
MILPITAS	U003782780	MILPITAS - BELLEW PUMP STA.	481 MURPHY RANCH RD		UST
MILPITAS	S106086744	PG & E MILPITAS SUBSTATION	1000FT N OF MONTAGUE EXPRESSWAY	95035	HAZNET
MILPITAS	1003878543	INTERNATIONAL DSPL CORP NEWBY IS LDFL	FT OF DIXON LANDING RD W END	95035	CERC-NFRAP
MILPITAS	S106094295	MILPITAS BUSINESS PA K BLDG C	1380 PIPER DR PARKING LOT	95035	HAZNET
MILPITAS	S106163015	SOUTHERN PACIFIC PIPELINE	UNKNOWN PENITENCIA CREEK	95035	LUST
MILPITAS	U001601475	MILPITAS FIRE STATION #2	YOSEMITE DR.	95035	HIST UST
UNINCORPORATED	U001601477	MILPITAS GAS TERMINAL	HIGHWAY 237 @ HIGHWAY 17	95035	HIST UST

To maintain currency of the following federal and state databases, EDR contacts the appropriate governmental agency on a monthly or quarterly basis, as required.

Elapsed ASTM days: Provides confirmation that this EDR report meets or exceeds the 90-day updating requirement

of the ASTM standard.

FEDERAL ASTM STANDARD RECORDS

NPL: National Priority List

Source: EPA Telephone: N/A

National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices.

Date of Government Version: 01/29/04
Date Made Active at EDR: 02/27/04

Database Release Frequency: Semi-Annually

Date of Data Arrival at EDR: 02/06/04

Elapsed ASTM days: 21

Date of Last EDR Contact: 02/06/04

NPL Site Boundaries

Sources:

EPA's Environmental Photographic Interpretation Center (EPIC)

Telephone: 202-564-7333

EPA Region 1 EPA Region 6

Telephone 617-918-1143 Telephone: 214-655-6659

EPA Region 3 EPA Region 8

Telephone 215-814-5418 Telephone: 303-312-6774

EPA Region 4

Telephone 404-562-8033

Proposed NPL: Proposed National Priority List Sites

Source: EPA Telephone: N/A

Date of Government Version: 01/07/04 Date of Data Arrival at EDR: 02/06/04

Date Made Active at EDR: 02/27/04 Elapsed ASTM days: 21

Database Release Frequency: Semi-Annually Date of Last EDR Contact: 02/06/04

CERCLIS: Comprehensive Environmental Response, Compensation, and Liability Information System

Source: EPA

Telephone: 703-413-0223

CERCLIS contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). CERCLIS contains sites which are either proposed to or on the National Priorities List (NPL) and sites which are in the screening and assessment phase for possible inclusion on the NPL.

Date of Government Version: 02/26/04 Date Made Active at EDR: 04/02/04

Database Release Frequency: Quarterly

Date of Data Arrival at EDR: 03/22/04

Elapsed ASTM days: 11

Date of Last EDR Contact: 03/22/04

CERCLIS-NFRAP: CERCLIS No Further Remedial Action Planned

Source: EPA

Telephone: 703-413-0223

As of February 1995, CERCLIS sites designated "No Further Remedial Action Planned" (NFRAP) have been removed from CERCLIS. NFRAP sites may be sites where, following an initial investigation, no contamination was found, contamination was removed quickly without the need for the site to be placed on the NPL, or the contamination was not serious enough to require Federal Superfund action or NPL consideration. EPA has removed approximately 25,000 NFRAP sites to lift the unintended barriers to the redevelopment of these properties and has archived them as historical records so EPA does not needlessly repeat the investigations in the future. This policy change is part of the EPA's Brownfields Redevelopment Program to help cities, states, private investors and affected citizens to promote economic redevelopment of unproductive urban sites.

Date of Government Version: 02/26/04 Date Made Active at EDR: 04/02/04 Database Release Frequency: Quarterly Date of Data Arrival at EDR: 03/22/04 Elapsed ASTM days: 11 Date of Last EDR Contact: 03/22/04

CORRACTS: Corrective Action Report

Source: EPA

Telephone: 800-424-9346

CORRACTS identifies hazardous waste handlers with RCRA corrective action activity.

Date of Government Version: 03/15/04 Date of Data Arrival at EDR: 03/25/04

Date Made Active at EDR: 04/15/04 Elapsed ASTM days: 21

Database Release Frequency: Semi-Annually Date of Last EDR Contact: 03/08/04

RCRIS: Resource Conservation and Recovery Information System

Source: EPA

Telephone: 800-424-9346

Resource Conservation and Recovery Information System. RCRIS includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Conditionally exempt small quantity generators (CESQGs): generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month. Small quantity generators (SQGs): generate between 100 kg and 1,000 kg of hazardous waste per month. Large quantity generators (LQGs): generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month. Transporters are individuals or entities that move hazardous waste from the generator off-site to a facility that can recycle, treat, store, or dispose of the waste.

Date of Government Version: 03/09/04 Date Made Active at EDR: 04/02/04

Database Release Frequency: Varies

Date of Data Arrival at EDR: 03/18/04

Elapsed ASTM days: 15

Date of Last EDR Contact: 04/20/04

ERNS: Emergency Response Notification System

Source: National Response Center, United States Coast Guard

Telephone: 202-260-2342

Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous

substances.

Date of Government Version: 12/31/03

Date Made Active at EDR: 03/12/04

Database Release Frequency: Annually

Date of Data Arrival at EDR: 01/26/04

Elapsed ASTM days: 46

Date of Last EDR Contact: 04/26/04

FEDERAL ASTM SUPPLEMENTAL RECORDS

BRS: Biennial Reporting System

Source: EPA/NTIS Telephone: 800-424-9346

The Biennial Reporting System is a national system administered by the EPA that collects data on the generation and management of hazardous waste. BRS captures detailed data from two groups: Large Quantity Generators (LQG) and Treatment, Storage, and Disposal Facilities.

Date of Government Version: 12/01/01
Database Release Frequency: Biennially

Date of Last EDR Contact: 03/16/04

Date of Next Scheduled EDR Contact: 06/14/04

CONSENT: Superfund (CERCLA) Consent Decrees

Source: EPA Regional Offices

Telephone: Varies

Major legal settlements that establish responsibility and standards for cleanup at NPL (Superfund) sites. Released periodically by United States District Courts after settlement by parties to litigation matters.

Date of Government Version: N/A Date of Last EDR Contact: N/A

Database Release Frequency: Varies Date of Next Scheduled EDR Contact: N/A

ROD: Records Of Decision

Source: EPA

Telephone: 703-416-0223

Record of Decision. ROD documents mandate a permanent remedy at an NPL (Superfund) site containing technical

and health information to aid in the cleanup.

Date of Government Version: 01/09/04 Date of Last EDR Contact: 04/05/04

Database Release Frequency: Annually Date of Next Scheduled EDR Contact: 07/05/04

DELISTED NPL: National Priority List Deletions

Source: EPA Telephone: N/A

The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the

NPL where no further response is appropriate.

Date of Government Version: 01/29/04 Date of Last EDR Contact: 02/06/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 05/01/04

FINDS: Facility Index System/Facility Identification Initiative Program Summary Report

Source: EPA Telephone: N/A

Facility Index System. FINDS contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

Date of Government Version: 04/08/04 Date of Last EDR Contact: 04/05/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 07/05/04

HMIRS: Hazardous Materials Information Reporting System

Source: U.S. Department of Transportation

Telephone: 202-366-4555

Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported to DOT.

Date of Government Version: 12/18/03 Date of Last EDR Contact: 04/20/04

Database Release Frequency: Annually Date of Next Scheduled EDR Contact: 07/19/04

MLTS: Material Licensing Tracking System Source: Nuclear Regulatory Commission

Telephone: 301-415-7169

MLTS is maintained by the Nuclear Regulatory Commission and contains a list of approximately 8,100 sites which possess or use radioactive materials and which are subject to NRC licensing requirements. To maintain currency,

EDR contacts the Agency on a quarterly basis.

Date of Government Version: 01/15/04 Date of Last EDR Contact: 04/05/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 07/05/04

MINES: Mines Master Index File

Source: Department of Labor, Mine Safety and Health Administration

Telephone: 303-231-5959

Date of Government Version: 03/05/04 Date of Last EDR Contact: 03/30/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 06/28/04

NPL LIENS: Federal Superfund Liens

Source: EPA

Telephone: 202-564-4267

Federal Superfund Liens. Under the authority granted the USEPA by the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980, the USEPA has the authority to file liens against real property in order to recover remedial action expenditures or when the property owner receives notification of potential liability. USEPA compiles a listing of filed notices of Superfund Liens.

Date of Government Version: 10/15/91 Date of Last EDR Contact: 03/12/04

Database Release Frequency: No Update Planned Date of Next Scheduled EDR Contact: 05/24/04

PADS: PCB Activity Database System

Source: EPA

Telephone: 202-564-3887

PCB Activity Database. PADS Identifies generators, transporters, commercial storers and/or brokers and disposers

of PCB's who are required to notify the EPA of such activities.

Date of Government Version: 12/30/03 Date of Last EDR Contact: 02/09/04

Database Release Frequency: Annually

Date of Next Scheduled EDR Contact: 05/10/04

DOD: Department of Defense Sites

Source: USGS

Telephone: 703-692-8801

This data set consists of federally owned or administered lands, administered by the Department of Defense, that have any area equal to or greater than 640 acres of the United States, Puerto Rico, and the U.S. Virgin Islands.

Date of Government Version: 10/01/03 Date of Last EDR Contact: 02/02/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 05/10/04

STORMWATER: Storm Water General Permits Source: Environmental Protection Agency

Telephone: 202 564-0746

A listing of all facilities with Storm Water General Permits.

Date of Government Version: N/A Date of Last EDR Contact: N/A

Database Release Frequency: Quarterly

Date of Next Scheduled EDR Contact: N/A

INDIAN RESERV: Indian Reservations

Source: USGS

Telephone: 202-208-3710

This map layer portrays Indian administered lands of the United States that have any area equal to or greater

than 640 acres.

Date of Government Version: 10/01/03 Date of Last EDR Contact: 02/02/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 05/10/04

US BROWNFIELDS: A Listing of Brownfields Sites Source: Environmental Protection Agency

Telephone: 202-566-2777

Included in the listing are brownfields properties addresses by Cooperative Agreement Recipients and brownfields properties addressed by Targeted Brownfields Assessments. Targeted Brownfields Assessments-EPA's Targeted Brownfields Assessments (TBA) program is designed to help states, tribes, and municipalities--especially those without EPA Brownfields Assessment Demonstration Pilots--minimize the uncertainties of contamination often associated with brownfields. Under the TBA program, EPA provides funding and/or technical assistance for environmental assessments at brownfields sites throughout the country. Targeted Brownfields Assessments supplement and work with other efforts under EPA's Brownfields Initiative to promote cleanup and redevelopment of brownfields. Cooperative Agreement Recipients-States, political subdivisions, territories, and Indian tribes become BCRLF cooperative agreement recipients when they enter into BCRLF cooperative agreements with the U.S. EPA. EPA selects BCRLF cooperative agreement recipients based on a proposal and application process. BCRLF cooperative agreement recipients must use EPA funds provided through BCRLF cooperative agreement for specified brownfields-related cleanup activities.

Date of Government Version: 07/15/03 Date of Last EDR Contact: 03/15/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 06/14/04

RMP: Risk Management Plans

Source: Environmental Protection Agency

Telephone: 202-564-8600

When Congress passed the Clean Air Act Amendments of 1990, it required EPA to publish regulations and guidance for chemical accident prevention at facilities using extremely hazardous substances. The Risk Management Program Rule (RMP Rule) was written to implement Section 112(r) of these amendments. The rule, which built upon existing industry codes and standards, requires companies of all sizes that use certain flammable and toxic substances to develop a Risk Management Program, which includes a(n): Hazard assessment that details the potential effects of an accidental release, an accident history of the last five years, and an evaluation of worst-case and alternative accidental releases; Prevention program that includes safety precautions and maintenance, monitoring, and employee training measures; and Emergency response program that spells out emergency health care, employee training measures and procedures for informing the public and response agencies (e.g the fire department) should an accident occur.

Date of Government Version: N/A

Date of Last EDR Contact: N/A

Database Release Frequency: N/A

Date of Next Scheduled EDR Contact: N/A

FUDS: Formerly Used Defense Sites Source: U.S. Army Corps of Engineers

Telephone: 202-528-4285

The listing includes locations of Formerly Used Defense Sites properties where the US Army Corps of Engineers

is actively working or will take necessary cleanup actions.

Date of Government Version: 10/01/03 Date of Last EDR Contact: 04/26/04

Database Release Frequency: Varies Date of Next Scheduled EDR Contact: 07/05/04

RAATS: RCRA Administrative Action Tracking System

Source: EPA

Telephone: 202-564-4104

RCRA Administration Action Tracking System. RAATS contains records based on enforcement actions issued under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA. For administration actions after September 30, 1995, data entry in the RAATS database was discontinued. EPA will retain a copy of the database for historical records. It was necessary to terminate RAATS because a decrease in agency resources made it impossible to continue to update the information contained in the database.

Date of Government Version: 04/17/95 Date of Last EDR Contact: 03/08/04

Database Release Frequency: No Update Planned Date of Next Scheduled EDR Contact: 06/07/04

TRIS: Toxic Chemical Release Inventory System

Source: EPA

Telephone: 202-566-0250

Toxic Release Inventory System. TRIS identifies facilities which release toxic chemicals to the air, water and

land in reportable quantities under SARA Title III Section 313.

Date of Government Version: 12/31/01 Date of Last EDR Contact: 03/23/04

Database Release Frequency: Annually

Date of Next Scheduled EDR Contact: 06/21/04

TSCA: Toxic Substances Control Act

Source: EPA

Telephone: 202-260-5521

Toxic Substances Control Act. TSCA identifies manufacturers and importers of chemical substances included on the TSCA Chemical Substance Inventory list. It includes data on the production volume of these substances by plant

site.

Date of Government Version: 12/31/02 Date of Last EDR Contact: 03/05/04

Database Release Frequency: Every 4 Years Date of Next Scheduled EDR Contact: 06/07/04

FTTS INSP: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)

Source: EPA

Telephone: 202-564-2501

Date of Government Version: 01/21/04 Date of Last EDR Contact: 03/22/04

Database Release Frequency: Quarterly

Date of Next Scheduled EDR Contact: 06/21/04

SSTS: Section 7 Tracking Systems

Source: EPA

Telephone: 202-564-5008

Section 7 of the Federal Insecticide, Fungicide and Rodenticide Act, as amended (92 Stat. 829) requires all registered pesticide-producing establishments to submit a report to the Environmental Protection Agency by March 1st each year. Each establishment must report the types and amounts of pesticides, active ingredients and devices

being produced, and those having been produced and sold or distributed in the past year.

Date of Government Version: 12/31/01 Date of Last EDR Contact: 04/19/04

Database Release Frequency: Annually Date of Next Scheduled EDR Contact: 07/19/04

FTTS: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)

Source: EPA/Office of Prevention, Pesticides and Toxic Substances

Telephone: 202-564-2501

FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act). To maintain currency, EDR contacts the

Agency on a quarterly basis.

Date of Government Version: 01/30/04 Date of Last EDR Contact: 03/22/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 06/21/04

STATE OF CALIFORNIA ASTM STANDARD RECORDS

AWP: Annual Workplan Sites

Source: California Environmental Protection Agency

Telephone: 916-323-3400

Known Hazardous Waste Sites. California DTSC's Annual Workplan (AWP), formerly BEP, identifies known hazardous

substance sites targeted for cleanup.

Date of Government Version: 03/02/04 Date of Data Arrival at EDR: 03/03/04

Date Made Active at EDR: 03/24/04 Elapsed ASTM days: 21

Database Release Frequency: Annually

Date of Last EDR Contact: 03/03/04

CAL-SITES: Calsites Database

Source: Department of Toxic Substance Control

Telephone: 916-323-3400

The Calsites database contains potential or confirmed hazardous substance release properties. In 1996, California

EPA reevaluated and significantly reduced the number of sites in the Calsites database.

Date of Government Version: 03/02/04 Date of Data Arrival at EDR: 03/03/04

Date Made Active at EDR: 03/24/04 Elapsed ASTM days: 21

Database Release Frequency: Quarterly Date of Last EDR Contact: 03/03/04

CHMIRS: California Hazardous Material Incident Report System

Source: Office of Emergency Services

Telephone: 916-845-8400

California Hazardous Material Incident Reporting System. CHMIRS contains information on reported hazardous material

incidents (accidental releases or spills).

Date of Government Version: 12/31/02 Date of Data Arrival at EDR: 07/11/03

Date Made Active at EDR: 08/07/03 Elapsed ASTM days: 27

Database Release Frequency: Varies Date of Last EDR Contact: 02/23/04

CORTESE: "Cortese" Hazardous Waste & Substances Sites List

Source: CAL EPA/Office of Emergency Information

Telephone: 916-323-9100

The sites for the list are designated by the State Water Resource Control Board (LUST), the Integrated Waste

Board (SWF/LS), and the Department of Toxic Substances Control (Cal-Sites).

Date of Government Version: 04/01/01 Date of Data Arrival at EDR: 05/29/01

Date Made Active at EDR: 07/26/01 Elapsed ASTM days: 58

Database Release Frequency: No Update Planned Date of Last EDR Contact: 04/28/04

NOTIFY 65: Proposition 65 Records

Source: State Water Resources Control Board

Telephone: 916-445-3846

Proposition 65 Notification Records. NOTIFY 65 contains facility notifications about any release which could impact

drinking water and thereby expose the public to a potential health risk.

Date of Government Version: 10/21/93 Date of Data Arrival at EDR: 11/01/93

Date Made Active at EDR: 11/19/93 Elapsed ASTM days: 18

Database Release Frequency: No Update Planned Date of Last EDR Contact: 04/19/04

TOXIC PITS: Toxic Pits Cleanup Act Sites Source: State Water Resources Control Board

Telephone: 916-227-4364

Toxic PITS Cleanup Act Sites. TOXIC PITS identifies sites suspected of containing hazardous substances where cleanup

has not yet been completed.

Date of Government Version: 07/01/95 Date of Data Arrival at EDR: 08/30/95

Date Made Active at EDR: 09/26/95 Elapsed ASTM days: 27

Database Release Frequency: No Update Planned Date of Last EDR Contact: 02/02/04

SWF/LF (SWIS): Solid Waste Information System Source: Integrated Waste Management Board

Telephone: 916-341-6320

Active, Closed and Inactive Landfills. SWF/LF records typically contain an inve ntory of solid waste disposal facilities or landfills. These may be active or i nactive facilities or open dumps that failed to meet RCRA Section

4004 criteria for solid waste landfills or disposal sites.

Date of Government Version: 03/15/04 Date of Data Arrival at EDR: 03/17/04

Date Made Active at EDR: 04/14/04 Elapsed ASTM days: 28

Database Release Frequency: Quarterly Date of Last EDR Contact: 03/16/04

WMUDS/SWAT: Waste Management Unit Database Source: State Water Resources Control Board

Telephone: 916-227-4448

Waste Management Unit Database System, WMUDS is used by the State Water Resources Control Board staff and the Regional Water Quality Control Boards for program tracking and inventory of waste management units. WMUDS is composed of the following databases: Facility Information, Scheduled Inspections Information, Waste Management Unit Information, SWAT Program Information, SWAT Report Summary Information, SWAT Report Summary Data, Chapter 15 (formerly Subchapter 15) Information, Chapter 15 Monitoring Parameters, TPCA Program Information, RCRA Program Information, Closure

Date of Government Version: 04/01/00 Date Made Active at EDR: 05/10/00

Information, and Interested Parties Information.

Date of Data Arrival at EDR: 04/10/00 Elapsed ASTM days: 30 Database Release Frequency: Quarterly Date of Last EDR Contact: 03/11/04

LUST: Leaking Underground Storage Tank Information System

Source: State Water Resources Control Board

Telephone: 916-341-5740

Leaking Underground Storage Tank Incident Reports. LUST records contain an inventory of reported leaking underground storage tank incidents. Not all states maintain these records, and the information stored varies by state.

Date of Government Version: 04/13/04 Date Made Active at EDR: 04/29/04

Database Release Frequency: Quarterly

Date of Data Arrival at EDR: 04/13/04

Elapsed ASTM days: 16

Date of Last EDR Contact: 04/13/04

CA BOND EXP. PLAN: Bond Expenditure Plan Source: Department of Health Services

Telephone: 916-255-2118

Department of Health Services developed a site-specific expenditure plan as the basis for an appropriation of

Hazardous Substance Cleanup Bond Act funds. It is not updated.

Date of Government Version: 01/01/89 Date of Data Arrival at EDR: 07/27/94

Date Made Active at EDR: 08/02/94 Elapsed ASTM days: 6

Database Release Frequency: No Update Planned Date of Last EDR Contact: 05/31/94

CA UST:

UST: Active UST Facilities Source: SWRCB Telephone: 916-341-5700

Active UST facilities gathered from the local regulatory agencies

Date of Government Version: 04/13/04

Date Made Active at EDR: 04/29/04

Database Release Frequency: Semi-Annually

Date of Data Arrival at EDR: 04/13/04

Elapsed ASTM days: 16

Date of Last EDR Contact: 04/13/04

VCP: Voluntary Cleanup Program Properties Source: Department of Toxic Substances Control

Telephone: 916-323-3400

Contains low threat level properties with either confirmed or unconfirmed releases and the project proponents have request that DTSC oversee investigation and/or cleanup activities and have agreed to provide coverage for

DTSC's costs.

Date of Government Version: 03/02/04 Date Made Active at EDR: 03/24/04 Database Release Frequency: Quarterly Date of Data Arrival at EDR: 03/03/04

Elapsed ASTM days: 21

Date of Last EDR Contact: 03/03/04

INDIAN LUST: Leaking Underground Storage Tanks on Indian Land

Source: Environmental Protection Agency

Telephone: 415-972-3372

LUSTs on Indian land in Arizona, California, New Mexico and Nevada

Date of Government Version: 02/09/04 Date of Data Arrival at EDR: 02/10/04

Date Made Active at EDR: 03/01/04 Elapsed ASTM days: 20

Database Release Frequency: Varies Date of Last EDR Contact: 01/27/04

INDIAN LUST: Leaking Underground Storage Tanks on Indian Land

Source: EPA Region 10 Telephone: 206-553-2857

LUSTs on Indian land in Alaska, Idaho, Oregon and Washington.

Date of Government Version: 03/11/04 Date of Data Arrival at EDR: 03/12/04

Date Made Active at EDR: 03/31/04 Elapsed ASTM days: 19

Database Release Frequency: Varies Date of Last EDR Contact: 01/27/04

INDIAN UST: Underground Storage Tanks on Indian Land

Source: EPA Region 9 Telephone: 415-972-3368

> Date of Government Version: 02/25/04 Date of Data Arrival at EDR: 03/01/04

Date Made Active at EDR: 03/24/04 Elapsed ASTM days: 23

Database Release Frequency: Varies Date of Last EDR Contact: 02/23/04

CA FID UST: Facility Inventory Database

Source: California Environmental Protection Agency

Telephone: 916-445-6532

The Facility Inventory Database (FID) contains a historical listing of active and inactive underground storage tank locations from the State Water Resource Control Board. Refer to local/county source for current data.

Date of Government Version: 10/31/94 Date of Data Arrival at EDR: 09/05/95

Date Made Active at EDR: 09/29/95 Elapsed ASTM days: 24

Database Release Frequency: No Update Planned Date of Last EDR Contact: 12/28/98

HIST UST: Hazardous Substance Storage Container Database

Source: State Water Resources Control Board

Telephone: 916-341-5700

The Hazardous Substance Storage Container Database is a historical listing of UST sites. Refer to local/county

source for current data.

Date of Government Version: 10/15/90 Date Made Active at EDR: 02/12/91

Database Release Frequency: No Update Planned

Date of Data Arrival at EDR: 01/25/91

Elapsed ASTM days: 18

Date of Last EDR Contact: 07/26/01

STATE OF CALIFORNIA ASTM SUPPLEMENTAL RECORDS

AST: Aboveground Petroleum Storage Tank Facilities Source: State Water Resources Control Board

Telephone: 916-341-5712

Registered Aboveground Storage Tanks.

Date of Government Version: 12/01/03 Date of Last EDR Contact: 02/02/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 05/01/04

CLEANERS: Cleaner Facilities

Source: Department of Toxic Substance Control

Telephone: 916-225-0873

A list of drycleaner related facilities that have EPA ID numbers. These are facilities with certain SIC codes:

power laundries, family and commercial; garment pressing and cleaner's agents; linen supply; coin-operated laundries and cleaning; drycleaning plants, except rugs; carpet and upholster cleaning; industrial launderers; laundry and

garment services.

Date of Government Version: 03/09/04 Date of Last EDR Contact: 04/05/04

Database Release Frequency: Annually Date of Next Scheduled EDR Contact: 07/05/04

CA WDS: Waste Discharge System

Source: State Water Resources Control Board

Telephone: 916-341-5227

Sites which have been issued waste discharge requirements.

Date of Government Version: 04/05/04 Date of Last EDR Contact: 03/22/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 06/21/04

DEED: List of Deed Restrictions

Source: Department of Toxic Substances Control

Telephone: 916-323-3400

The use of recorded land use restrictions is one of the methods the DTSC uses to protect the public from unsafe

exposures to hazardous substances and wastes.

Date of Government Version: 01/05/04 Date of Last EDR Contact: 04/06/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 07/05/04

NFA: No Further Action Determination

Source: Department of Toxic Substances Control

Telephone: 916-323-3400

This category contains properties at which DTSC has made a clear determination that the property does not pose

a problem to the environment or to public health.

Date of Government Version: 03/02/04 Date of Last EDR Contact: 03/03/04

Database Release Frequency: Quarterly

Date of Next Scheduled EDR Contact: 05/31/04

EMI: Emissions Inventory Data

Source: California Air Resources Board

Telephone: 916-322-2990

Toxics and criteria pollutant emissions data collected by the ARB and local air pollution agencies.

Date of Government Version: 12/31/01 Date of Last EDR Contact: 04/20/04

Database Release Frequency: Varies Date of Next Scheduled EDR Contact: 07/19/04

TC1182143.2s Page GR-9

REF: Unconfirmed Properties Referred to Another Agency Source: Department of Toxic Substances Control

Telephone: 916-323-3400

This category contains properties where contamination has not been confirmed and which were determined as not requiring direct DTSC Site Mitigation Program action or oversight. Accordingly, these sites have been referred

to another state or local regulatory agency.

Date of Government Version: 03/02/04 Date of Last EDR Contact: 03/03/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 05/31/04

SCH: School Property Evaluation Program

Source: Department of Toxic Substances Control

Telephone: 916-323-3400

This category contains proposed and existing school sites that are being evaluated by DTSC for possible hazardous materials contamination. In some cases, these properties may be listed in the CalSites category depending on the

level of threat to public health and safety or the environment they pose.

Date of Government Version: 03/02/04 Date of Last EDR Contact: 03/03/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 05/31/04

NFE: Properties Needing Further Evaluation Source: Department of Toxic Substances Control

Telephone: 916-323-3400

This category contains properties that are suspected of being contaminated. These are unconfirmed contaminated properties that need to be assessed using the PEA process. PEA in Progress indicates properties where DTSC is currently conducting a PEA. PEA Required indicates properties where DTSC has determined a PEA is required, but not currently underway.

Date of Government Version: 03/02/04 Date of Last EDR Contact: 03/03/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 05/31/04

HAZNET: Hazardous Waste Information System Source: California Environmental Protection Agency

Telephone: 916-255-1136

Facility and Manifest Data. The data is extracted from the copies of hazardous waste manifests received each year by the DTSC. The annual volume of manifests is typically 700,000 - 1,000,000 annually, representing approximately 350,000 - 500,000 shipments. Data are from the manifests submitted without correction, and therefore many contain some invalid values for data elements such as generator ID, TSD ID, waste category, and disposal method.

Date of Government Version: 12/31/02 Date of Last EDR Contact: 02/09/04

Database Release Frequency: Annually

Date of Next Scheduled EDR Contact: 05/10/04

LOCAL RECORDS

ALAMEDA COUNTY:

Local Oversight Program Listing of UGT Cleanup Sites

Source: Alameda County Environmental Health Services

Telephone: 510-567-6700

Date of Government Version: 12/09/03 Date of Last EDR Contact: 04/26/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 07/26/04

Underground Tanks

Source: Alameda County Environmental Health Services

Telephone: 510-567-6700

Date of Government Version: 12/09/03 Date of Last EDR Contact: 04/26/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 07/26/04

CONTRA COSTA COUNTY:

Site List

Source: Contra Costa Health Services Department

Telephone: 925-646-2286

List includes sites from the underground tank, hazardous waste generator and business plan/2185 programs.

Date of Government Version: 03/05/04 Date of Last EDR Contact: 03/01/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 05/31/04

FRESNO COUNTY:

CUPA Resources List

Source: Dept. of Community Health

Telephone: 559-445-3271

Certified Unified Program Agency. CUPA's are responsible for implementing a unified hazardous materials and hazardous waste management regulatory program. The agency provides oversight of businesses that deal with hazardous materials, operate underground storage tanks or aboveground storage tanks.

Date of Government Version: 01/14/04 Date of Last EDR Contact: 01/15/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 05/10/04

KERN COUNTY:

Underground Storage Tank Sites & Tank Listing

Source: Kern County Environment Health Services Department

Telephone: 661-862-8700

Kern County Sites and Tanks Listing.

Date of Government Version: 01/27/04 Date of Last EDR Contact: 03/08/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 06/07/04

LOS ANGELES COUNTY:

List of Solid Waste Facilities

Source: La County Department of Public Works

Telephone: 818-458-5185

Date of Government Version: 06/03/03 Date of Last EDR Contact: 02/20/04

Database Release Frequency: Varies Date of Next Scheduled EDR Contact: 05/17/04

City of El Segundo Underground Storage Tank

Source: City of El Segundo Fire Department

Telephone: 310-524-2236

Date of Government Version: 03/01/04 Date of Last EDR Contact: 02/16/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 05/17/04

City of Long Beach Underground Storage Tank

Source: City of Long Beach Fire Department

Telephone: 562-570-2543

Date of Government Version: 03/28/03 Date of Last EDR Contact: 02/23/04

Database Release Frequency: Annually Date of Next Scheduled EDR Contact: 05/24/04

TC1182143.2s Page GR-11

City of Torrance Underground Storage Tank

Source: City of Torrance Fire Department

Telephone: 310-618-2973

Date of Government Version: 02/17/04 Date of Last EDR Contact: 02/16/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 05/17/04

City of Los Angeles Landfills

Source: Engineering & Construction Division

Telephone: 213-473-7869

Date of Government Version: 03/01/04 Date of Last EDR Contact: 03/16/04

Database Release Frequency: Varies Date of Next Scheduled EDR Contact: 06/14/04

HMS: Street Number List

Source: Department of Public Works

Telephone: 626-458-3517

Industrial Waste and Underground Storage Tank Sites.

Date of Government Version: 09/30/03 Date of Last EDR Contact: 11/17/03

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 02/16/04

Site Mitigation List

Source: Community Health Services

Telephone: 323-890-7806

Industrial sites that have had some sort of spill or complaint.

Date of Government Version: 02/26/04 Date of Last EDR Contact: 02/16/04

Database Release Frequency: Annually Date of Next Scheduled EDR Contact: 05/17/04

San Gabriel Valley Areas of Concern

Source: EPA Region 9 Telephone: 415-972-3178

San Gabriel Valley areas where VOC contamination is at or above the MCL as designated by region 9 EPA office.

Date of Government Version: 12/31/98 Date of Last EDR Contact: 07/06/99

Database Release Frequency: No Update Planned Date of Next Scheduled EDR Contact: N/A

MARIN COUNTY:

Underground Storage Tank Sites

Source: Public Works Department Waste Management

Telephone: 415-499-6647

Currently permitted USTs in Marin County.

Date of Government Version: 02/10/04 Date of Last EDR Contact: 02/02/04

Database Release Frequency: Semi-Annually

Date of Next Scheduled EDR Contact: 05/01/04

NAPA COUNTY:

Sites With Reported Contamination

Source: Napa County Department of Environmental Management

Telephone: 707-253-4269

Date of Government Version: 03/29/04 Date of Last EDR Contact: 03/29/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 06/28/04

Closed and Operating Underground Storage Tank Sites

Source: Napa County Department of Environmental Management

Telephone: 707-253-4269

Date of Government Version: 03/29/04 Date of Last EDR Contact: 03/29/04

Database Release Frequency: Annually Date of Next Scheduled EDR Contact: 06/28/04

ORANGE COUNTY:

List of Underground Storage Tank Cleanups

Source: Health Care Agency Telephone: 714-834-3446

Orange County Underground Storage Tank Cleanups (LUST).

Date of Government Version: 03/01/04 Date of Last EDR Contact: 03/08/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 06/07/04

List of Underground Storage Tank Facilities

Source: Health Care Agency Telephone: 714-834-3446

Orange County Underground Storage Tank Facilities (UST).

Date of Government Version: 03/01/04 Date of Last EDR Contact: 03/08/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 06/07/04

List of Industrial Site Cleanups

Source: Health Care Agency Telephone: 714-834-3446

Petroleum and non-petroleum spills.

Date of Government Version: 03/01/04 Date of Last EDR Contact: 03/08/04

Database Release Frequency: Annually Date of Next Scheduled EDR Contact: 06/07/04

PLACER COUNTY:

Master List of Facilities

Source: Placer County Health and Human Services

Telephone: 530-889-7312

List includes aboveground tanks, underground tanks and cleanup sites.

Date of Government Version: 02/17/04 Date of Last EDR Contact: 02/17/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 06/21/04

RIVERSIDE COUNTY:

Listing of Underground Tank Cleanup Sites

Source: Department of Public Health

Telephone: 909-358-5055

Riverside County Underground Storage Tank Cleanup Sites (LUST).

Date of Government Version: 12/23/03 Date of Last EDR Contact: 04/19/04

Database Release Frequency: Quarterly

Date of Next Scheduled EDR Contact: 07/19/04

Underground Storage Tank Tank List

Source: Health Services Agency Telephone: 909-358-5055

Date of Government Version: 12/01/03 Date of Last EDR Contact: 04/19/04

Database Release Frequency: Quarterly

Date of Next Scheduled EDR Contact: 07/19/04

TC1182143.2s Page GR-13

SACRAMENTO COUNTY:

CS - Contaminated Sites

Source: Sacramento County Environmental Management

Telephone: 916-875-8406

Date of Government Version: 01/29/04 Date of Last EDR Contact: 02/02/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 05/01/04

ML - Regulatory Compliance Master List

Source: Sacramento County Environmental Management

Telephone: 916-875-8406

Any business that has hazardous materials on site - hazardous material storage sites, underground storage tanks,

waste generators.

Date of Government Version: 02/03/04 Date of Last EDR Contact: 02/02/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 05/01/04

SAN BERNARDINO COUNTY:

Hazardous Material Permits

Source: San Bernardino County Fire Department Hazardous Materials Division

Telephone: 909-387-3041

This listing includes underground storage tanks, medical waste handlers/generators, hazardous materials handlers,

hazardous waste generators, and waste oil generators/handlers.

Date of Government Version: 04/15/04 Date of Last EDR Contact: 03/08/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 06/07/04

SAN DIEGO COUNTY:

Solid Waste Facilities

Source: Department of Health Services

Telephone: 619-338-2209

San Diego County Solid Waste Facilities.

Date of Government Version: 08/01/00 Date of Last EDR Contact: 02/23/04

Database Release Frequency: Varies Date of Next Scheduled EDR Contact: 05/24/04

Hazardous Materials Management Division Database

Source: Hazardous Materials Management Division

Telephone: 619-338-2268

The database includes: HE58 - This report contains the business name, site address, business phone number, establishment 'H' permit number, type of permit, and the business status. HE17 - In addition to providing the same information provided in the HE58 listing, HE17 provides inspection dates, violations received by the establishment, hazardous waste generated, the quantity, method of storage, treatment/disposal of waste and the hauler, and information on underground storage tanks. Unauthorized Release List - Includes a summary of environmental contamination cases in San Diego County (underground tank cases, non-tank cases, groundwater contamination, and soil contamination are included.)

Date of Government Version: 10/31/03 Date of Last EDR Contact: 04/08/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 07/05/04

SAN FRANCISCO COUNTY:

Local Oversite Facilities

Source: Department Of Public Health San Francisco County

Telephone: 415-252-3920

Date of Government Version: 03/08/04 Date of Last EDR Contact: 03/08/04

Database Release Frequency: Quarterly

Date of Next Scheduled EDR Contact: 06/07/04

Underground Storage Tank Information

Source: Department of Public Health

Telephone: 415-252-3920

Date of Government Version: 03/08/04 Date of Last EDR Contact: 03/08/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 06/07/04

SAN MATEO COUNTY:

Fuel Leak List

Source: San Mateo County Environmental Health Services Division

Telephone: 650-363-1921

Date of Government Version: 01/29/04 Date of Last EDR Contact: 04/12/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 07/12/04

Business Inventory

Source: San Mateo County Environmental Health Services Division

Telephone: 650-363-1921

List includes Hazardous Materials Business Plan, hazardous waste generators, and underground storage tanks.

Date of Government Version: 04/07/04 Date of Last EDR Contact: 03/02/04

Database Release Frequency: Annually Date of Next Scheduled EDR Contact: 07/12/04

SANTA CLARA COUNTY:

Fuel Leak Site Activity Report

Source: Santa Clara Valley Water District

Telephone: 408-265-2600

Date of Government Version: 12/31/03 Date of Last EDR Contact: 03/30/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 06/28/04

Hazardous Material Facilities

Source: City of San Jose Fire Department

Telephone: 408-277-4659

Date of Government Version: 10/01/03 Date of Last EDR Contact: 03/08/04

Database Release Frequency: Annually Date of Next Scheduled EDR Contact: 06/07/04

SOLANO COUNTY:

Leaking Underground Storage Tanks

Source: Solano County Department of Environmental Management

Telephone: 707-421-6770

Date of Government Version: 03/18/04 Date of Last EDR Contact: 03/15/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 06/14/04

Underground Storage Tanks

Source: Solano County Department of Environmental Management

Telephone: 707-421-6770

Date of Government Version: 03/18/04 Date of Last EDR Contact: 03/15/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 06/14/04

SONOMA COUNTY:

Leaking Underground Storage Tank Sites

Source: Department of Health Services

Telephone: 707-565-6565

Date of Government Version: 01/26/04 Date of Last EDR Contact: 04/26/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 07/26/04

SUTTER COUNTY:

Underground Storage Tanks

Source: Sutter County Department of Agriculture

Telephone: 530-822-7500

Date of Government Version: 01/29/04 Date of Last EDR Contact: 04/05/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 07/05/04

VENTURA COUNTY:

Inventory of Illegal Abandoned and Inactive Sites

Source: Environmental Health Division

Telephone: 805-654-2813

Ventura County Inventory of Closed, Illegal Abandoned, and Inactive Sites.

Date of Government Version: 09/01/02 Date of Last EDR Contact: 02/23/04

Database Release Frequency: Annually

Date of Next Scheduled EDR Contact: 05/24/04

Listing of Underground Tank Cleanup Sites

Source: Environmental Health Division

Telephone: 805-654-2813

Ventura County Underground Storage Tank Cleanup Sites (LUST).

Date of Government Version: 02/26/04 Date of Last EDR Contact: 03/16/04

Database Release Frequency: Quarterly

Date of Next Scheduled EDR Contact: 06/14/04

Underground Tank Closed Sites List

Source: Environmental Health Division

Telephone: 805-654-2813

Ventura County Operating Underground Storage Tank Sites (UST)/Underground Tank Closed Sites List.

Date of Government Version: 12/01/03 Date of Last EDR Contact: 04/15/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 07/12/04

Business Plan, Hazardous Waste Producers, and Operating Underground Tanks

Source: Ventura County Environmental Health Division

Telephone: 805-654-2813

The BWT list indicates by site address whether the Environmental Health Division has Business Plan (B), Waste

Producer (W), and/or Underground Tank (T) information.

Date of Government Version: 02/26/04 Date of Last EDR Contact: 03/16/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 06/14/04

TC1182143.2s Page GR-16

YOLO COUNTY:

Underground Storage Tank Comprehensive Facility Report

Source: Yolo County Department of Health

Telephone: 530-666-8646

Date of Government Version: 01/27/04 Date of Last EDR Contact: 04/19/04

Database Release Frequency: Annually Date of Next Scheduled EDR Contact: 07/19/04

California Regional Water Quality Control Board (RWQCB) LUST Records

LUST REG 1: Active Toxic Site Investigation

Source: California Regional Water Quality Control Board North Coast (1)

Telephone: 707-576-2220

Del Norte, Humboldt, Lake, Mendocino, Modoc, Siskiyou, Sonoma, Trinity counties. For more current information,

please refer to the State Water Resources Control Board's LUST database.

Date of Government Version: 02/01/01 Date of Last EDR Contact: 02/23/04

Database Release Frequency: No Update Planned Date of Next Scheduled EDR Contact: 05/24/04

LUST REG 2: Fuel Leak List

Source: California Regional Water Quality Control Board San Francisco Bay Region (2)

Telephone: 510-286-0457

Date of Government Version: 03/31/04 Date of Last EDR Contact: 04/12/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 07/12/04

LUST REG 3: Leaking Underground Storage Tank Database

Source: California Regional Water Quality Control Board Central Coast Region (3)

Telephone: 805-549-3147

Date of Government Version: 05/19/03 Date of Last EDR Contact: 02/16/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 05/17/04

LUST REG 4: Underground Storage Tank Leak List

Source: California Regional Water Quality Control Board Los Angeles Region (4)

Telephone: 213-576-6600

Los Angeles, Ventura counties. For more current information, please refer to the State Water Resources Control

Board's LUST database.

Date of Government Version: 02/10/04 Date of Last EDR Contact: 03/08/04

Database Release Frequency: No Update Planned Date of Next Scheduled EDR Contact: 06/07/04

LUST REG 5: Leaking Underground Storage Tank Database

Source: California Regional Water Quality Control Board Central Valley Region (5)

Telephone: 916-255-3125

Date of Government Version: 04/01/04 Date of Last EDR Contact: 04/08/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 07/05/04

LUST REG 6L: Leaking Underground Storage Tank Case Listing

Source: California Regional Water Quality Control Board Lahontan Region (6)

Telephone: 916-542-5424

For more current information, please refer to the State Water Resources Control Board's LUST database.

Date of Government Version: 09/09/03 Date of Last EDR Contact: 03/08/04

Database Release Frequency: No Update Planned Date of Next Scheduled EDR Contact: 06/07/04

LUST REG 6V: Leaking Underground Storage Tank Case Listing

Source: California Regional Water Quality Control Board Victorville Branch Office (6)

Telephone: 760-346-7491

Date of Government Version: 01/21/04 Date of Last EDR Contact: 04/05/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 07/05/04

LUST REG 7: Leaking Underground Storage Tank Case Listing

Source: California Regional Water Quality Control Board Colorado River Basin Region (7)

Telephone: 760-346-7491

Date of Government Version: 02/26/04 Date of Last EDR Contact: 02/26/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 06/28/04

LUST REG 8: Leaking Underground Storage Tanks

Source: California Regional Water Quality Control Board Santa Ana Region (8)

Telephone: 909-782-4498

California Regional Water Quality Control Board Santa Ana Region (8). For more current information, please refer

to the State Water Resources Control Board's LUST database.

Date of Government Version: 01/12/04 Date of Last EDR Contact: 01/08/04

Database Release Frequency: No Update Planned Date of Next Scheduled EDR Contact: 05/10/04

LUST REG 9: Leaking Underground Storage Tank Report

Source: California Regional Water Quality Control Board San Diego Region (9)

Telephone: 858-467-2980

Orange, Riverside, San Diego counties. For more current information, please refer to the State Water Resources

Control Board's LUST database.

Date of Government Version: 03/01/01 Date of Last EDR Contact: 04/19/04

Database Release Frequency: No Update Planned Date of Next Scheduled EDR Contact: 07/19/04

California Regional Water Quality Control Board (RWQCB) SLIC Records

SLIC REG 1: Active Toxic Site Investigations

Source: California Regional Water Quality Control Board, North Coast Region (1)

Telephone: 707-576-2220

Date of Government Version: 04/03/03 Date of Last EDR Contact: 02/23/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 05/24/04

SLIC REG 2: Spills, Leaks, Investigation & Cleanup Cost Recovery Listing

Source: Regional Water Quality Control Board San Francisco Bay Region (2)

Telephone: 510-286-0457

Any contaminated site that impacts groundwater or has the potential to impact groundwater.

Date of Government Version: 03/28/03 Date of Last EDR Contact: 04/12/04

Database Release Frequency: Quarterly

Date of Next Scheduled EDR Contact: 07/12/04

SLIC REG 3: Spills, Leaks, Investigation & Cleanup Cost Recovery Listing

Source: California Regional Water Quality Control Board Central Coast Region (3)

Telephone: 805-549-3147

Any contaminated site that impacts groundwater or has the potential to impact groundwater.

Date of Government Version: 09/16/03 Date of Last EDR Contact: 02/16/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 05/17/04

SLIC REG 4: Spills, Leaks, Investigation & Cleanup Cost Recovery Listing Source: Region Water Quality Control Board Los Angeles Region (4)

Telephone: 213-576-6600

Any contaminated site that impacts groundwater or has the potential to impact groundwater.

Date of Government Version: 01/28/04 Date of Last EDR Contact: 04/26/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 07/26/04

SLIC REG 5: Spills, Leaks, Investigation & Cleanup Cost Recovery Listing Source: Regional Water Quality Control Board Central Valley Region (5)

Telephone: 916-855-3075

Unregulated sites that impact groundwater or have the potential to impact groundwater.

Date of Government Version: 04/01/04 Date of Last EDR Contact: 04/05/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 07/05/04

SLIC REG 6L: SLIC Sites

Source: California Regional Water Quality Control Board, Lahontan Region

Telephone: 530-542-5574

Date of Government Version: 03/09/04 Date of Last EDR Contact: 03/08/04

Database Release Frequency: Varies Date of Next Scheduled EDR Contact: 06/07/04

SLIC REG 6V: Spills, Leaks, Investigation & Cleanup Cost Recovery Listing Source: Regional Water Quality Control Board, Victorville Branch

Telephone: 619-241-6583

Date of Government Version: 01/01/04 Date of Last EDR Contact: 04/05/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 07/05/04

SLIC REG 7: SLIC List

Source: California Regional Quality Control Board, Colorado River Basin Region

Telephone: 760-346-7491

Date of Government Version: 02/27/04 Date of Last EDR Contact: 02/23/04

Database Release Frequency: Varies Date of Next Scheduled EDR Contact: 05/24/04

SLIC REG 8: Spills, Leaks, Investigation & Cleanup Cost Recovery Listing Source: California Region Water Quality Control Board Santa Ana Region (8)

Telephone: 909-782-3298

Date of Government Version: 04/01/03 Date of Last EDR Contact: 04/08/04

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 07/05/04

SLIC REG 9: Spills, Leaks, Investigation & Cleanup Cost Recovery Listing Source: California Regional Water Quality Control Board San Diego Region (9)

Telephone: 858-467-2980

Date of Government Version: 12/01/03 Date of Last EDR Contact: 12/01/03

Database Release Frequency: Annually Date of Next Scheduled EDR Contact: 03/04/04

EDR PROPRIETARY HISTORICAL DATABASES

EDR Historical Gas Station and Dry Cleaners: EDR has searched select national collections of business directories and has collected listings of potential dry cleaner and gas station/filling station/service station sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include dry cleaning and gas station/filling station/service station establishments. The categories reviewed included, but were not limited to: gas, gas station, gasoline station, filling station, auto, automobile repair, auto service station, service station, dry cleaner, cleaners, laundry, laundromat, cleaning/laundry, wash & dry, etc.

This information is meant to assist and complement environmental professionals in their conduct of environmental site assessments, and is not meant to be a substitute for a full historical investigation as defined in ASTM E1527. The information provided in this proprietary database may or may not be complete; i.e., the absence of a dry cleaner or gas station/filling station/service station site does not necessarily mean that such a site did not exist in the area covered by this report.

(A note on "dry cleaning" sites: it is not possible for EDR to differentiate between establishments that use PERC on-site as a cleaning solvent and sites that function simply as drop-off and pick-up locations or that are traditional wet cleaning/laundry facilities. Therefore, it is essential for environmental professionals to incorporate professional judgment in the evaluation of each site.)

Former Manufactured Gas (Coal Gas) Sites: The existence and location of Coal Gas sites is provided exclusively to EDR by Real Property Scan, Inc. ©Copyright 1993 Real Property Scan, Inc. For a technical description of the types of hazards which may be found at such sites, contact your EDR customer service representative.

Disclaimer Provided by Real Property Scan, Inc.

The information contained in this report has predominantly been obtained from publicly available sources produced by entities other than Real Property Scan. While reasonable steps have been taken to insure the accuracy of this report, Real Property Scan does not guarantee the accuracy of this report. Any liability on the part of Real Property Scan is strictly limited to a refund of the amount paid. No claim is made for the actual existence of toxins at any site. This report does not constitute a legal opinion.

BROWNFIELDS DATABASES

VCP: Voluntary Cleanup Program Properties Source: Department of Toxic Substances Control

Telephone: 916-323-3400

Contains low threat level properties with either confirmed or unconfirmed releases and the project proponents have request that DTSC oversee investigation and/or cleanup activities and have agreed to provide coverage for

DTSC's costs.

Date of Government Version: 03/02/04

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 05/31/04

US BROWNFIELDS: A Listing of Brownfields Sites Source: Environmental Protection Agency

Telephone: 202-566-2777

Included in the listing are brownfields properties addresses by Cooperative Agreement Recipients and brownfields properties addressed by Targeted Brownfields Assessments. Targeted Brownfields Assessments-EPA's Targeted Brownfields Assessments (TBA) program is designed to help states, tribes, and municipalities--especially those without EPA Brownfields Assessment Demonstration Pilots--minimize the uncertainties of contamination often associated with brownfields. Under the TBA program, EPA provides funding and/or technical assistance for environmental assessments at brownfields sites throughout the country. Targeted Brownfields Assessments supplement and work with other efforts under EPA's Brownfields Initiative to promote cleanup and redevelopment of brownfields. Cooperative Agreement Recipients-States, political subdivisions, territories, and Indian tribes become BCRLF cooperative agreement recipients when they enter into BCRLF cooperative agreements with the U.S. EPA. EPA selects BCRLF cooperative agreement recipients based on a proposal and application process. BCRLF cooperative agreement recipients must use EPA funds provided through BCRLF cooperative agreement for specified brownfields-related cleanup activities.

Date of Government Version: N/A
Database Release Frequency: Semi-Annually

Date of Last EDR Contact: N/A
Date of Next Scheduled EDR Contact: N/A

Date of Last EDR Contact: 03/03/04

OTHER DATABASE(S)

Depending on the geographic area covered by this report, the data provided in these specialty databases may or may not be complete. For example, the existence of wetlands information data in a specific report does not mean that all wetlands in the area covered by the report are included. Moreover, the absence of any reported wetlands information does not necessarily mean that wetlands do not exist in the area covered by the report.

Oil/Gas Pipelines: This data was obtained by EDR from the USGS in 1994. It is referred to by USGS as GeoData Digital Line Graphs from 1:100,000-Scale Maps. It was extracted from the transportation category including some oil, but primarily gas pipelines.

Electric Power Transmission Line Data

Source: PennWell Corporation Telephone: (800) 823-6277

This map includes information copyrighted by PennWell Corporation. This information is provided on a best effort basis and PennWell Corporation does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of PennWell.

Sensitive Receptors: There are individuals deemed sensitive receptors due to their fragile immune systems and special sensitivity to environmental discharges. These sensitive receptors typically include the elderly, the sick, and children. While the location of all sensitive receptors cannot be determined, EDR indicates those buildings and facilities - schools, daycares, hospitals, medical centers, and nursing homes - where individuals who are sensitive receptors are likely to be located.

AHA Hospitals:

Source: American Hospital Association, Inc.

Telephone: 312-280-5991

The database includes a listing of hospitals based on the American Hospital Association's annual survey of hospitals.

Medical Centers: Provider of Services Listing

Source: Centers for Medicare & Medicaid Services

Telephone: 410-786-3000

A listing of hospitals with Medicare provider number, produced by Centers of Medicare & Medicaid Services,

a federal agency within the U.S. Department of Health and Human Services.

Nursing Homes

Source: National Institutes of Health

Telephone: 301-594-6248

Information on Medicare and Medicaid certified nursing homes in the United States.

Public Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on elementary

and secondary public education in the United States. It is a comprehensive, annual, national statistical database of all public elementary and secondary schools and school districts, which contains data that are comparable across all states.

Private Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on private school locations in the United States.

Daycare Centers: Licensed Facilities

Source: Department of Social Services

Telephone: 916-657-4041

Flood Zone Data: This data, available in select counties across the country, was obtained by EDR in 1999 from the Federal Emergency Management Agency (FEMA). Data depicts 100-year and 500-year flood zones as defined by FEMA.

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002 from the U.S. Fish and Wildlife Service.

STREET AND ADDRESS INFORMATION

© 2003 Geographic Data Technology, Inc., Rel. 07/2003. This product contains proprietary and confidential property of Geographic Data Technology, Inc. Unauthorized use, including copying for other than testing and standard backup procedures, of this product is expressly prohibited.

GEOCHECK®- PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

MILPITAS LIBRARY 160 NORTH MAIN STREET MILPITAS, CA 95035

TARGET PROPERTY COORDINATES

Latitude (North): 37.432598 - 37° 25' 57.4" Longitude (West): 121.907303 - 121° 54' 26.3"

Universal Tranverse Mercator: Zone 10 UTM X (Meters): 596674.5 UTM Y (Meters): 4143220.0

Elevation: 14 ft. above sea level

EDR's GeoCheck Physical Setting Source Addendum has been developed to assist the environmental professional with the collection of physical setting source information in accordance with ASTM 1527-00, Section 7.2.3. Section 7.2.3 requires that a current USGS 7.5 Minute Topographic Map (or equivalent, such as the USGS Digital Elevation Model) be reviewed. It also requires that one or more additional physical setting sources be sought when (1) conditions have been identified in which hazardous substances or petroleum products are likely to migrate to or from the property, and (2) more information than is provided in the current USGS 7.5 Minute Topographic Map (or equivalent) is generally obtained, pursuant to local good commercial or customary practice, to assess the impact of migration of recognized environmental conditions in connection with the property. Such additional physical setting sources generally include information about the topographic, hydrologic, hydrogeologic, and geologic characteristics of a site, and wells in the area.

Assessment of the impact of contaminant migration generally has two principle investigative components:

- 1. Groundwater flow direction, and
- 2. Groundwater flow velocity.

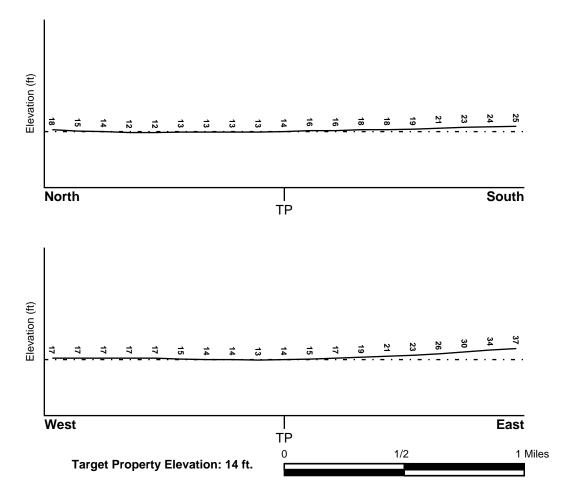
Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata. EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).

TOPOGRAPHIC INFORMATION

Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.


TARGET PROPERTY TOPOGRAPHY

USGS Topographic Map: 37121-D8 MILPITAS, CA

General Topographic Gradient: General NW

Source: USGS 7.5 min quad index

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

FEMA Flood

Target Property County SANTA CLARA, CA Electronic Data
YES - refer to the Overview Map and Detail Map

Flood Plain Panel at Target Property:

0603440001F

Additional Panels in search area:

0603440003F

NATIONAL WETLAND INVENTORY

NWI Electronic

NWI Quad at Target Property

Data Coverage

MILPITAS

YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Site-Specific Hydrogeological Data*:

Search Radius: 1.25 miles Status: Not found

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

 MAP ID
 FROM TP
 GROUNDWATER FLOW

 Not Reported
 GROUNDWATER FLOW

^{*©1996} Site—specific hydrogeological data gathered by CERCLIS Alerts, Inc., Bainbridge Island, WA. All rights reserved. All of the information and opinions presented are those of the cited EPA report(s), which were completed under a Comprehensive Environmental Response Compensation and Liability Information System (CERCLIS) investigation.

GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION

Era: Cenozoic Category: Stratifed Sequence

System: Quaternary Series: Quaternary

Code: Q (decoded above as Era, System & Series)

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps. The following information is based on Soil Conservation Service STATSGO data.

Soil Component Name: CLEAR LAKE

Soil Surface Texture: clay

Hydrologic Group: Class D - Very slow infiltration rates. Soils are clayey, have a high

water table, or are shallow to an impervious layer.

Soil Drainage Class: Not reported

Hydric Status: Soil does not meet the requirements for a hydric soil.

Corrosion Potential - Uncoated Steel: HIGH

Depth to Bedrock Min: > 60 inches

Depth to Bedrock Max: > 60 inches

Soil Layer Information							
Boundary			Classification				
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	Permeability Rate (in/hr)	Soil Reaction (pH)
1	0 inches	13 inches	clay	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit 50% or more), Fat Clay.	Max: 0.20 Min: 0.06	Max: 8.40 Min: 6.10

	Soil Layer Information						
Boundary				Classification			
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	Permeability Rate (in/hr)	Soil Reaction (pH)
2	13 inches	60 inches	clay	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit 50% or more), Fat Clay.	Max: 0.20 Min: 0.06	Max: 8.40 Min: 7.40

OTHER SOIL TYPES IN AREA

Based on Soil Conservation Service STATSGO data, the following additional subordinant soil types may appear within the general area of target property.

Soil Surface Textures: silty clay loam

clay loam loam silt loam

Surficial Soil Types: silty clay loam

clay loam loam silt loam

Shallow Soil Types: clay

gravelly - sandy clay loam

clay loam stratified

Deeper Soil Types: clay loam

stratified silty clay loam sandy clay loam

loam silty clay

weathered bedrock

ADDITIONAL ENVIRONMENTAL RECORD SOURCES

According to ASTM E 1527-00, Section 7.2.2, "one or more additional state or local sources of environmental records may be checked, in the discretion of the environmental professional, to enhance and supplement federal and state sources... Factors to consider in determining which local or additional state records, if any, should be checked include (1) whether they are reasonably ascertainable, (2) whether they are sufficiently useful, accurate, and complete in light of the objective of the records review (see 7.1.1), and (3) whether they are obtained, pursuant to local, good commercial or customary practice." One of the record sources listed in Section 7.2.2 is water well information. Water well information can be used to assist the environmental professional in assessing sources that may impact groundwater flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

DATABASE SEARCH DISTANCE (miles)

Federal USGS 1.000

Federal FRDS PWS Nearest PWS within 1 mile

State Database 1.000

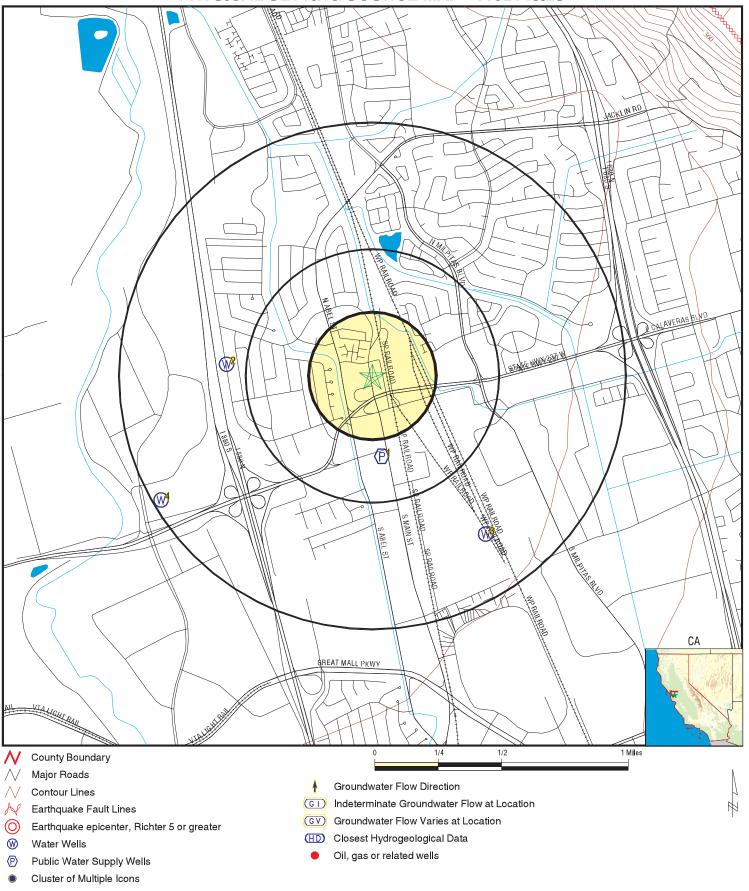
FEDERAL USGS WELL INFORMATION

MAP ID WELL ID LOCATION FROM TP

No Wells Found

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

LOCATION MAP ID WELL ID FROM TP


1 CA4300964 1/4 - 1/2 Mile South

Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
2	6821	1/2 - 1 Mile West
3	22467	1/2 - 1 Mile SE
4	6841	1/2 - 1 Mile WSW

PHYSICAL SETTING SOURCE MAP - 1182143.2s

TARGET PROPERTY: ADDRESS: CITY/STATE/ZIP: LAT/LONG:

Milpitas Library 160 North Main Street Milpitas CA 95035 37.4326 / 121.9073

CUSTOMER: Treadwell & Rollo, Inc. CONTACT: Peter J. Cusack 1182143.2s

DATE: April 30, 2004 8:53 am

GEOCHECK® - PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction Distance

Elevation Database EDR ID Number

South FRDS PWS CA4300964

1/4 - 1/2 Mile Higher

PWS ID: CA4300964 PWS Status: Active Date Initiated: 9212 Date DeactivatedNot Reported

PWS Name: BFI

BFI-THE RECYCLERY 1601 DIXON LANDING RD. MILPITAS, CA 95035

Addressee / Facility: System Owner/Responsible Party

BFI-THE RECYCLERY 1601 DIXON LANDING ROAD MILPITAS, CA 95035

Facility Latitude: 37 25 41 Facility Longitude121 54 20

City Served: Not Reported

Treatment Class: Untreated Population: 00000040

PWS currently has or had major violation(s) or enforcement: Yes

VIOLATIONS INFORMATION:

Violation ID: 9300001 Source ID: Not Reported PWS Phone: Not Reported Vio. beginning Date: 01/01/93 Vio. end Date: 01/31/93 Vio. Period: 001 Months

Num required Samples: Not Reported Number of Samples Taken: Not Reported Analysis Result: Not Reported Maximum Contaminant Level: Not Reported

Analysis Method: Not Reported

Violation Type: Monitoring, Routine Major (TCR)

Contaminant: COLIFORM (TCR)

Vio. Awareness Date: 030293

ENFORCEMENT INFORMATION:

System Name: BFI-THE RECYCLERY

Violation Type: Monitoring, Routine Major (TCR)

Contaminant: COLIFORM (TCR)
Compliance Period: 2002-01-01 - 2002-01-31

Compliance Period: 2002-01-01 - 2002-01-31 Analytical Value: 0
Violation ID: 0217001 Enforcement ID: 0217001
Enforcement Date: 2002-02-25 Enf. Action: State AO (w/o Penalty) Issued

System Name: BFI-THE RECYCLERY

Violation Type: Initial Tap Sampling for Pb and Cu

Contaminant: LEAD & COPPER RULE
Compliance Period: 1993-07-01 - 2000-04-04 Analytical Value:

Violation ID: 95V0001 Enforcement ID: 0089899

Enforcement Date: 2000-04-04 Enf. Action: State Compliance Achieved

System Name: BFI-THE RECYCLERY

Violation Type: Initial Tap Sampling for Pb and Cu

Contaminant: LEAD & COPPER RULE

Compliance Period: 1993-07-01 - 2000-04-04 Analytical Value: 0000000.000000000

Violation ID: 95V0001 Enforcement ID: 0089899

Enforcement Date: 2000-04-04 Enf. Action: State Compliance Achieved

GEOCHECK® - PHYSICAL SETTING SOURCE MAP FINDINGS

ENFORCEMENT INFORMATION:

System Name: **BFI-THE RECYCLERY**

Violation Type: Initial Tap Sampling for Pb and Cu

LEAD & COPPER RULE Contaminant:

Compliance Period: 1993-07-01 - 2000-04-04 Analytical Value: 0000000.000000000

Violation ID: 95V0001 Enforcement ID: 0089899

Enforcement Date: 2000-04-04 Enf. Action: State Compliance Achieved

System Name: **BFI-THE RECYCLERY**

Violation Type: Initial Tap Sampling for Pb and Cu

LEAD & COPPER RULE Contaminant:

Compliance Period: 1993-07-01 - 2015-12-31 Analytical Value: 0000000.000000000 95V0001 Enforcement ID: Violation ID: Not Reported **Enforcement Date:** Not Reported Enf. Action: Not Reported

CA WELLS 6821

West 1/2 - 1 Mile Higher

Water System Information:

Prime Station Code: 06S/01E-06N01 M User ID: HEN

4310005001 FRDS Number: County: Santa Clara

Station Type: District Number: 05 WELL/AMBNT/MUN/INTAKE/SUPPLY

Water Type: Well/Groundwater Well Status: **Inactive Untreated** Source Lat/Long: 0.5 Mile (30 Seconds) 372600.0 1215500.0 Precision:

Source Name: MARYLINN WELL - INACTIVE

System Number: 4310005 System Name: City of Milpitas

Organization That Operates System:

455 E CALAVERAS BLVD MILPITAS, CA 95035

Pop Served: 54368 Connections: 13337

Area Served: **MILPITAS**

Sample Information: * Only Findings Above Detection Level Are Listed

Sample Collected: 06/28/1988 Findings: 620.000 UMHO

Chemical: SPECIFIC CONDUCTANCE

Sample Collected: 06/28/1988 Findings: 8.500

Chemical: PH (LABORATORY)

Sample Collected: 140.000 MG/L 06/28/1988 Findings:

Chemical: **BICARBONATE ALKALINITY**

Sample Collected: 06/28/1988 Findings: 140.000 MG/L

TOTAL HARDNESS (AS CACO3) Chemical:

Sample Collected: 06/28/1988 44.000 MG/L Findings:

Chemical: **CALCIUM** Sample Collected: 06/28/1988

Findings: 7.300 MG/L Chemical: **MAGNESIUM**

Sample Collected: 06/28/1988

Findings: 82.000 MG/L **SODIUM** Chemical:

Sample Collected: 06/28/1988

Findings: 31.000 MG/L **CHLORIDE** Chemical:

.280 MG/L Sample Collected: 06/28/1988 Findings:

Chemical: FLUORIDE (TEMPERATURE DEPENDENT)

Sample Collected: 06/28/1988 Findings: 18.000 UG/L

Chemical: **ARSENIC**

GEOCHECK®-PHYSICAL SETTING SOURCE MAP FINDINGS

Sample Collected: Chemical:	06/28/1988 BARIUM	Findings:	120.000 UG/L
Sample Collected: Chemical:	06/28/1988 MANGANESE	Findings:	150.000 UG/L
Sample Collected: Chemical:	06/28/1988 SELENIUM	Findings:	40.000 UG/L
Sample Collected: Chemical:	06/28/1988 TOTAL DISSOLVED SOLIDS	Findings:	400.000 MG/L
Sample Collected: Chemical:	06/28/1988 TURBIDITY (LAB)	Findings:	.060 NTU
Sample Collected: Chemical:	08/09/1988 IRON	Findings:	620.000 UG/L
Sample Collected: Chemical:	08/09/1988 MANGANESE	Findings:	160.000 UG/L
Sample Collected: Chemical:	07/29/1991 GROSS ALPHA COUNTING ERROR	Findings:	2.000 PCI/L
Sample Collected: Chemical:	07/29/1991 RA 226 + RA 228 COUNTING ERROR	Findings:	.100 PCI/L
Sample Collected: Chemical:	07/29/1991 URANIUM	Findings:	7.000 PCI/L
Sample Collected: Chemical:	07/29/1991 SPECIFIC CONDUCTANCE	Findings:	660.000 UMHO
Sample Collected: Chemical:	07/29/1991 PH (LABORATORY)	Findings:	8.000
Sample Collected: Chemical:	07/29/1991 TOTAL ALKALINITY (AS CACO3)	Findings:	250.000 MG/L
Sample Collected: Chemical:	07/29/1991 BICARBONATE ALKALINITY	Findings:	250.000 MG/L
Sample Collected: Chemical:	07/29/1991 TOTAL HARDNESS (AS CACO3)	Findings:	200.000 MG/L
Sample Collected: Chemical:	07/29/1991 CALCIUM	Findings:	42.000 MG/L
Sample Collected: Chemical:	07/29/1991 MAGNESIUM	Findings:	19.000 MG/L
Sample Collected: Chemical:	07/29/1991 SODIUM	Findings:	73.000 MG/L
Sample Collected: Chemical:	07/29/1991 CHLORIDE	Findings:	29.000 MG/L
Sample Collected: Chemical:	07/29/1991 FLUORIDE (TEMPERATURE DEPEND	Findings: DENT)	.320 MG/L
Sample Collected: Chemical:	07/29/1991 ARSENIC	Findings:	13.000 UG/L
Sample Collected: Chemical:	07/29/1991 BARIUM	Findings:	120.000 UG/L
Sample Collected: Chemical:	07/29/1991 IRON	Findings:	130.000 UG/L
Sample Collected: Chemical:	07/29/1991 LEAD	Findings:	14.000 UG/L
Sample Collected: Chemical:	07/29/1991 MANGANESE	Findings:	120.000 UG/L

GEOCHECK®-PHYSICAL SETTING SOURCE MAP FINDINGS

Sample Collected: 07/29/1991 Findings: 440.000 MG/L

Chemical: TOTAL DISSOLVED SOLIDS

Sample Collected: 07/29/1991 Findings: .870 NTU

Chemical: TURBIDITY (LAB)

Sample Collected: 10/29/1991 Findings: 2.000 PCI/L

Chemical: GROSS ALPHA COUNTING ERROR

Sample Collected: 10/29/1991 Findings: .100 PCI/L

Chemical: RA 226 + RA 228 COUNTING ERROR

Sample Collected: 10/29/1991 Findings: 133.000 PCI/L

Chemical: TOTAL RADON 222 COUNTING ERROR

Sample Collected: 04/28/1992 Findings: 3.000 PCI/L

Chemical: GROSS ALPHA COUNTING ERROR

Sample Collected: 04/28/1992 Findings: .100 PCI/L

Chemical: RA 226 + RA 228 COUNTING ERROR

1/2 - 1 Mile Higher

Water System Information:

Prime Station Code: E43/005-SCVWDMI User ID: HEN FRDS Number: 4310005003 County: Santa Clara

District Number: 05 Station Type: RESVR/CANAL/AMBNT/MUN/INTAKE

Water Type: Surface Water Well Status: Combined Treated Source Lat/Long: 372525.9 1215353.1 Precision: 1,000 Feet (10 Seconds)

Source Name: SCVWD - MILPITAS CONNECTION

System Number: 4310005
System Name: City of Milpitas
Organization That Operates System:

455 E CALAVERAS BLVD

MILPITAS, CA 95035

Pop Served: 54368 Connections: 13337

Area Served: MILPITAS

4 WSW CA WELLS 6841

1/2 - 1 Mile Higher

Water System Information:

Prime Station Code: 06S/01W-12G02 M User ID: 43C

FRDS Number: 4300798001 County: Santa Clara

District Number: 73 Station Type: WELL/AMBNT/MUN/INTAKE

Water Type: Well/Groundwater Well Status: Active Untreated

Source Lat/Long: 372532.0 1215517.0 Precision: 1,000 Feet (10 Seconds)

Source Name: WELL 01 System Number: 4300798

System Name: SHELL OIL SERVICE STATION

Organization That Operates System:

1310 ALVISO MILPITAS RD.

MILPITAS, CA 95035

Pop Served: 100 Connections: 1

Area Served: Not Reported

CA WELLS

22467

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS RADON

AREA RADON INFORMATION

State Database: CA Radon

Radon Test Results

Zip	Total Sites	> 4 Pci/L	Pct. > 4 Pci/L
_			
95035	5	0	0.00

Federal EPA Radon Zone for SANTA CLARA County: 2

Note: Zone 1 indoor average level > 4 pCi/L.

: Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.

: Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for Zip Code: 95035

Number of sites tested: 1

Area Average Activity % <4 pCi/L % 4-20 pCi/L % >20 pCi/L Living Area - 1st Floor 0.400 pCi/L 100% 0% Living Area - 2nd Floor Not Reported Not Reported Not Reported Not Reported **Basement** Not Reported Not Reported Not Reported Not Reported

PHYSICAL SETTING SOURCE RECORDS SEARCHED

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5' Digital Elevation Model in 2002. 7.5-Minute DEMs correspond to the USGS

1:24,000- and 1:25,000-scale topographic quadrangle maps.

HYDROLOGIC INFORMATION

Flood Zone Data: This data, available in select counties across the country, was obtained by EDR in 1999 from the Federal Emergency Management Agency (FEMA). Data depicts 100-year and 500-year flood zones as defined by FEMA.

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002 from the U.S. Fish and Wildlife Service.

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Services

The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

ADDITIONAL ENVIRONMENTAL RECORD SOURCES

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS)

This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

STATE RECORDS

California Drinking Water Quality Database

Source: Department of Health Services

Telephone: 916-324-2319

The database includes all drinking water compliance and special studies monitoring for the state of California since 1984. It consists of over 3,200,000 individual analyses along with well and water system information.

California Oil and Gas Well Locations for District 2, 3, 5 and 6

Source: Department of Conservation

Telephone: 916-323-1779

RADON

State Database: CA Radon

Source: Department of Health Services

Telephone: 916-324-2208 Radon Database for California

Area Radon Information

Source: USGS

Telephone: 703-356-4020

The National Radon Database has been developed by the U.S. Environmental Protection Agency (USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

EPA Radon Zones

Source: EPA

Telephone: 703-356-4020

Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor

radon levels.

OTHER

Airport Landing Facilities: Private and public use landing facilities

Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater

Source: Department of Commerce, National Oceanic and Atmospheric Administration

California Earthquake Fault Lines: The fault lines displayed on EDR's Topographic map are digitized quaternary fault lines, prepared in 1975 by the United State Geological Survey. Additional information (also from 1975) regarding activity at specific fault lines comes from California's Preliminary Fault Activity Map prepared by the California Division of Mines and Geology.

APPENDIX C
Exploratory Boring Logs

	PRC)JEC	T:			160 NORTH MAIN STREET Milpitas, California	Log of Bo	oring	g EE	3-1	PA	GE 1 (OF 1
	Borin	g loca	ition:	5	See Si	te Plan, Figure 2		Logg	ed by:	M. G	Sibbons		
		starte		5	5/14/04	Date finished: 5/14/04		Drille	d By:	Greç	gg Drillir	ng	
		g met			Direct I								
		mer w				Hammer type:			LABOR	RATOR	Y TEST	DATA	
	Sam			oprob					t	gth			₹ +
T C	(feet)	Sampler 7	Samble Samble	SPT C	LITHOLOGY	MATERIAL DESCRIPTI	ON	Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
l	1-	DP				SAND (SP) medium brown, very loose, dry, asphalt m	ix			3,			
	2—	ALS		1	SP		_	-					
	3—	DP	Ш			21.11/21		1					
	4—	ALS	Η̈́	t	CL	CLAY (CL) dark gray/black, soft, plastic, no odor	_	_					
	5—	DP	Ш]									
	6—						_						
	7 —						_						
	8—						_						
	9-						_						
	10—	•					_	Ī					
	11—	,					_	1					
	12—	•					_	Ī					
	13—	٠					_	1					
	14—	٠					_	1					
	15—						_	1					
	16—						_	1					
	17—						_	1					
	18—						_	1					
1	19—						_	1					
	20—						_	1					
	21—	}					_	1					
	22—	}					_	1					
9/02	23—						_	1					
T 5/25	24—						_	1					
R.GD	25—						_	1					
JPJ T	26—						_	†					
ENV.G	27—						_	†					
801_E	28—						_	1					
G 381	29—						_	1					
ЗНLO	30—						-						
TEST GEOTECH LOG 381801_ENV.GPJ TR.GDT 5/25/05	back	ng termir filled wit ountered	h ceme	ent grou	ıt. Grour	ground surface. Boring Indwater was not		1	Γrea	dwe	8 k	Rolk)
ST GE	enco	untered	uuring	uriiing	j.			Project I	No.:	18.01	Figure:		C-1
ΨL									39	10.01			U-1

PROJECT:	160 NORTH MAIN STREET Milpitas, California	g of Bo	oring	g EE	3-10) PAG	GE 1 ()F 1
Boring location:	See Site Plan, Figure 2		Logg	ed by:	M. G	ibbons		<u> </u>
Date started:	5/14/04 Date finished: 5/14/04		Drille	d By:	Greg	gg Drillir	ng	
Drilling method:	Direct Push							
Hammer weight/dr				LABO	RATOR'	Y TEST	DATA	
Sampler: Geopr				D 0 #	ngth it		%	r. 4
	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
1— DP 2— ALS 3— DP 4— ALS DP 5— ALS 6— 7— 8— 9— 10— 11— DP 12— 13— 14— 15— 16— 17— 18— 19— 20— 21— 22— 23—	SAND (SP) brown, very loose, dry, non plastic, asphalt mix SP CLAY (CL) dark brown/gray, moist, very plastic, no odor CL CL				She		0	
24— 10: 25—		_						
26—		_						
27—		_						
28—		_						
29—		_						
30								
Boring terminated at 16	feet below ground surface. Boring grout. Groundwater encountered at 3.			Γrea	dwe	- 1214	Rolk)
TEST			Project I	No.: 39	18.01	Figure:		C-10

PROJECT:	160 NORTH MAIN STREET Milpitas, California	Log of Bo	oring	g EE	3-11	PAG	GE 1 (OF 1
Boring location	See Site Plan, Figure 2	I	Logg	ed by:	M. G	ibbons		<u></u>
Date started:	5/14/04 Date finished: 5/14/04		Drille	d By:	Greg	gg Drillir	ng	
Drilling method								
Hammer weigh				LABO	RATOR'	Y TEST	DATA	
0.41450	oprobe			n e t	ngth -t		o %	ž, t
Cfeet) Sampler Type Sample Sample		TION	Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
1— DP 2— ALS DP 3— ALS DP 5— ALS 6— 7— 8— DP 10— 11— 12— 13— 14— 15— 16— 17— 18— 20— 21— 22— 23— 24— 22— 23— 24— 22— 23— 24— 22— 23— 24— 25— 27— 22— 23— 24— 25— 27— 28— 29— 30— 21— 22— 23— 26— 27— 28— 29— 30— 21— 22— 28— 29— 30— 21— 22— 24— 25— 25— 26— 27— 26— 27— 28— 26— 27— 26— 27— 28— 26— 27— 26— 27— 28— 26— 27— 28— 26— 27— 26— 26— 27— 26— 26— 27— 26— 26— 27— 26— 26— 27— 26— 26— 26— 26— 26— 26— 26— 26— 26— 26	Top Soil CLAY (CL) dark gray/black, moist, very plastic, no CL CLAY (CL) red/yellow-brown, moist, plastic, no odd CL CL CLAY (CL) red/yellow-brown, moist, plastic, no odd CL CL CLAY (CL) red/yellow-brown, moist, plastic, no odd	- - -			She			
<u>5</u> 28—		_	-					
29—		_						
30		-						
Boring terminated backfilled with cen at a depth of 8.5 fe	at 12 feet below ground surface. Boring nent grout. Groundwater was encountered et during drilling.			Гrea	dwe		Rolk	D
TEST			Project I	39°	18.01	Figure:		C-11

PROJECT:	160 NORTH MAIN STREET Milpitas, California	Log of Bo	oring	j EE	3-12	PA	GE 1 (OF 1
Boring location:	See Site Plan, Figure 2	I.	Logg	ed by:	M. G	ibbons		
Date started:	5/14/04 Date finished: 5/14/04		Drille	d By:	Greg	g Drillir	ng	
Drilling method:	Direct Push							
Hammer weight/di				LABOR	RATOR'	Y TEST	DATA	
Sampler: Geop			_	T of t	igth t		. %	£.≠
	MATERIAL DESCRIPTION OF THE PROPERTY OF THE PR	ON	Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
1 DP	gray, asphalt, no odor							
'	CLAY (CL) dark gray-black, moist, plastic							
DP		_						
3— ALS	CL	_						
4— DP		_						
5— ALS								
6—		_						
7—		_						
8—		_						
9—		_						
10—		_						
11—								
12—		_	l I					
13—		_						
14—								
15—								
16—		_						
17—		_						
18—		_						
19—		_						
20—		_						
21—		_						
22—		_						
23-								
90/92 24—								
24— 10 25—								
<u>0</u> 25		_						
L 26—								
27—		_						
28—		_	İ					
8 29— 9 -								
	6 feet below ground surface. Boring grout. Groundwater was not	-	1	Гrea	dwe		Rolk	D
O Shouthered during the	um y.		Project N	No.:	18.01	Figure:		C-12

PRC	JEC ⁻	Т:			160 NORTH M Milpitas, C			Log	of Bo	oring	g EE	3-13	, PA	GE 1 (DF 1
Borin	g loca	tion:	5	See Si	ite Plan, Figure 2					Logg	ed by:	M. G	Sibbons		
Date	started	d:	5	5/14/0	4 1	Date finished: 5/14/0	4			Drille	d By:	Greg	gg Drillin	ng	
	g met				Push										
	mer w					Hammer type:				-	LABOI	RATOR	Y TEST	DATA	
Samp		Geo MPLE	probe								Dot-	ngth it		. %	₹.+
DEPTH (feet)	Sampler Type	Sample	SPT C	ПТНОГОСУ	M	MATERIAL DESCR	RIPTIO	N	_	Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
	DP				gray, asphalt,	no odor									
1 1-	ALS	•			CLAY (CL)	k, moist, plastic				1					
2—	DP	Ш			dark gray-blac	k, moist, plastic			_	1					
3—	ALS	9		CL						1					
4—	DP								_	1					
5—	ALS	•								1					
6—									_	1					
7—									_	1					
8—									_						
9—									_	1					
10—									_	-					
11—									_	1					
12—									_	-					
13—									_	1					
14—									_						
15—									_						
16—									_						
17—									_						
18—									_						
19—									_						
20—									_						
21—									_]					
22—									_]					
23—									_	1					
25 24—									_						
10 25 Z															
25—									_]					
26—															
27—									_	1					
28—									_	1					
8 29—										1					
backf		n ceme	ent grou	ıt. Grou	ground surface. Boring ndwater was not				-	1	Frea	dwe	& k	Rolk	D
EST G		ig		,-						Project N	No.: 39	18.01	Figure:		C-13

PROJECT:	160 NORTH MAIN STREET Milpitas, California	og of Bo	ring	g EE	3-2	PAC	GE 1 C)F 1
Boring location:	See Site Plan, Figure 2		Logg	ed by:	M. G	ibbons		
Date started:	5/14/04 Date finished: 5/14/04		Drille	d By:	Greg	g Drillin	ıg	
Drilling method:	Direct Push							
Hammer weight/dr	•			LABOF	RATOR'	Y TEST	DATA	
Sampler: Geopr			ı	n e t	ngth :t		6%	-t. E
	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
1— DP 2— ALS DP 3— ALS DP 5— ALS 6— 7— 8— 9— 10— 11— DP 12— 13— 14— 15— 16— 17— 18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28— 29— 30— Boring terminated at 1 backfilled with cement at a depth of 9.0 feet did at a	SAND (SP) dark brown, very loose, dry, asphalt mix SP CLAY (CL) dark gray-brown, moist, plastic, no odor			0	Shee Lt.			Dry Tree Tree Tree Tree Tree Tree Tree Tr
27—		_						
<u>5</u> 28—		_						
29—		_						
30								
Boring terminated at 16 backfilled with cement at a depth of 9.0 feet dig	6 feet below ground surface. Boring grout. Groundwater was encountered uring drilling.			Frea	dwe		Rolk)
TEST			Project N	39°	18.01	Figure:		C-2

PROJE	ECT:			160 NORTH M Milpitas, C			Log o	f Bo	ring	g EE	3-3	PA	GE 1 (OF 1
Boring le	locatio	n:	See S	ite Plan, Figure 2					Logg	ed by:	M. G	ibbons		
Date sta	arted:		5/14/0	4	Date finished: 5/14/0-	4			Drille	d By:	Greg	gg Drillir	ng	
Drilling r			Direct	Push										
Hamme					Hammer type:					LABOI	RATOR'	Y TEST	DATA	
Sampler	r: G SAMF	eoprob							_	D 0.7	igth t		. %	+ 4
-	Type	1	ПТНОСОСУ	N	MATERIAL DESCR	IPTIO	N		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
	DP LS		SP	SAND (SP) dark brown, ve	ery loose, dry, Asphalt	mix		_						
3— D	DP LS		CL	CLAY (CL) dark brown/gra	ay, moist, plastic, no o	dor		_						
5— Al	DP LS													
6 7								_						
9—								_						
10—								_						
11-								_						
12-														
13-								_						
15—														
16—														
17—								_						
18—								_						
19—								_						
20—								_						
21—								_						
22—								_						
23—								_						
90/92/9 24 								_						
25—								_						
26—								_						
한 27—								_						
<u>5</u> 28—								_						
29—								_						
30—								_						
Boring te backfilled encounte	d with ce	ment gro	ut. Grou	ground surface. Boring ndwater was not					1	Trea	dwe	8 k	Rolk)
25 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25		J							Project N	No.: 39	18.01	Figure:		C-3

PRO)JEC	T:			160 NORTH M Milpitas, C			Log o	f Bo	oring	g EE	3-4	PAG	GE 1 (OF 1
Borin	g loca	tion:	5	See Si	te Plan, Figure 2			I		Logg	ed by:	M. G	ibbons		
Date	starte	d:	5	5/14/0	4	Date finished: 5/14	/04			Drille	d By:	Greg	g Drillir	ng	
	g met			Direct	Push	T									
	mer w					Hammer type:				-	LABO	RATOR'	Y TEST	DATA	
Samp		Ged MPLE	probe								Do at	ngth it		%	-t- (-
DEPTH (feet)	Sampler Type (Sample	SPT C	LITHOLOGY	N	MATERIAL DESC	RIPTIO	N		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
1-	DP ALS	•		SP	SAND (SP) yellow-brown,	very loose, asphalt r	nix		_						
3—	DP ALS	•		CL	CLAY (CL) dark brown/gra	ay, moist, plastic, no	odor		_						
4— 5—	DP ALS	9							_						
6—									_						
7—									_						
8-	•								_						
9-									_						
11—									_						
12-									_						
13—									_						
14—									_	-					
15—									_	<u> </u> 					
16—									_						
17—									_	1					
18—									_	1					
19—	•								_						
20—									_	†					
21-									_						
22-															
25 24—									_						
)S 105 25—									_	-					
26—									_						
Ğ 27 —									_						
원 28—									_	1					
29—									_						
30—									_						
ы Borir back enco		h ceme	ent grou	ıt. Groui	ground surface. Boring ndwater was not					_ 1	Trea	dw€	216	Rolk)
TEST GEOTECH LOG 381801_ENV.GPJ TR.GDT 5/25/05		9								Project N	%.: 39	18.01	Figure:		C-4

PRO	OJEC	T:			160 NORTH MAIN STREET Milpitas, California	of Bo	ring	g EE	3-5	PA	GE 1 (OF 1
Borir	ng loca	ation:	;	See Si	te Plan, Figure 2		Logg	ed by:	M. G	Sibbons		•
Date	starte	d:	,	5/14/04	Date finished: 5/14/04		Drille	d By:	Greg	gg Drillir	ng	
	ng met			Direct								
	mer w				Hammer type:			LABOR	RATOR'	Y TEST	DATA	
Sam	· -	Geo MPLI	oprob						gth			≥ +
DEPTH (feet)	Sampler Type 9		SPT 6 N-Value	ПТНОГОСУ	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
1-	DP ALS			SP	SAND (SP) yellow-brown, non-plastic, no odor	_						
3-	DP ALS			CL	CLAY (CL) dark brown/gray, moist, plastic, no odor	_						
4- 5-	DP ALS	•										
6- 7-						_						
8-						_						
9-						_						
10-						_						
11-	1					_						
12-	1					_						
13-	1					_						
14-	1					_						
15-	1					_						
16-						_						
17-						_						
18-	1					_						
19-	1					_						
20-	1					_						
21-	1					_						
22-						_						
ي 23-	1					_						
0/97/9	1					_						
25-						_						
26-	1					_						
27-	-					_						
S 28-						_						
29-						_						
90 30-												
Bori bacl	ing termi kfilled wit ountered	th ceme	ent gro	ut. Groui	ground surface. Boring ndwater was not				dwe		Rolk)
TEST							Project N	39′	18.01	Figure:		C-5

PROJECT:	160 NORTH MAIN STREET Milpitas, California Log of	Вс	ring	g EE	3-6	PAG	GE 1 (OF 1
Boring location:	See Site Plan, Figure 2		Logg	ed by:	М. С	Sibbons		
Date started:	5/14/04 Date finished: 5/14/04		Drille	d By:	Greg	gg Drillir	ng	
Drilling method:	Direct Push							
Hammer weight/dr				LABO	RATOR	Y TEST	DATA	
Sampler: Geopr			_	D 0 #	ngth t		%	r B
	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
1— DP 2— ALS 3— DP 4— 5— ALS 6— 7— 8— 9— 10— DP 11— 12— 13— 14— 15— 16— 17— 18— 19— 20— 21— 22— 23—	SAND (SP) olive-yellow-brown, very loose, dry, non plastic, no odor SP CLAY (CL) dark brown/gray, moist, very plastic, no odor color change to yellow-brown at 5.5 feet CL CL				Sha			
전 10 25—		_						
26—		_						
집 27—		_						
28—		_						
29—		_						
9 30								
Boring terminated at 16	feet below ground surface. Boring grout. Groundwater was encountered uring drilling.				dwe	Ne	Rolk)
TEST			Project N	No.: 39	18.01	Figure:		C-6

PRO	JEC	Γ:			160 NORTH MAIN STREET Milpitas, California	Log of Bo	oring	g EE	3-7	PA	GE 1 (OF 1
Boring	j locat	tion:	5	See Si	ite Plan, Figure 2		Logg	ed by:	M. G	ibbons		
Date s	started	d:	5	/14/0	4 Date finished: 5/14/04		Drille	d By:	Greg	gg Drillir	ng	
Drilling					Push							
Hamm					Hammer type:		-	LABO	RATOR'	Y TEST	DATA	
Sample		Geo MPLE	probe					Det:	ngth :t		. %	نا <u>ب</u> ا
DEPTH (feet)	Sampler Type	Sample	SPT N-Value	LITHOLOGY	MATERIAL DESCRIPTION	ON	Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
2-	DP ALS DP ALS	a		SP	SAND (SP) dark brown, very loose, dry, non plastic, n mix	o odor, asphalt _ _ _						
_	DP ALS	•		CL	CLAY (CL) dark gray to dark brown, moist, very plasti	c, no odor						
6—	ALS	•				_						
7—						_	_					
8—						_	-					
9—						_						
10—						_						
11—						_						
12—						_	_					
13—						_	_					
14—						_	-					
15—						_	_					
16—						_	1					
17—						_	1					
18—						_	1					
19—						_	1					
20—						_	1					
21—						_						
22—						_						
23—						_						
24—						_	1					
25—						_	1					
26—						_	1					
27—						_	1					
28—						_	1					
_ල 29—						_	-					
backfill		ceme	nt grou	t. Grou	ground surface. Boring indwater was not	-	1	Γrea	dwe		Rolk	-
EST GI		aan iy	aniii iy	•			Project I	No.: 39	18.01	Figure:		C-7

PROJECT:	160 NORTH MAIN STREET Milpitas, California	of Boring EB-8
Boring location:	See Site Plan, Figure 2	Logged by: M. Gibbons
Date started:	5/14/04 Date finished: 5/14/04	Drilled By: Gregg Drilling
Drilling method:	Direct Push	
Hammer weight/di		LABORATORY TEST DATA
Sampler: Geop		- Bot Bbt 6% 5+
	MATERIAL DESCRIPTION	Type of Strength Test Confining Pressure Lbs/Sq Ft Shear Strength Lbs/Sq Ft Fines % Natural Moisture Content, % Dry Density Lbs/Cu Ft
1— DP ALS	SAND (SP) yellow-brown, non-plastic, no odor SP	
DP DP		7
3— ALS	CLAY (CL)	
4- DP	dark brown-gray, soft, plastic, no-odor, moist	7
5— ALS		7
6—		7
7—	CL	-
8-	Ţ	-
9— DP		-
10—		-
11—		-
12—		
13—		-
14—		-
15—		-
16—		-
17—		-
18—		-
19—		_
20—		_
21—		-
22—		-
23—		-
90/97/9		_
25—		_
26—		_
27—		_
5 28—		_
8 29—		
9 30		
Boring terminated at 1	2 feet below ground surface. Boring grout. Groundwater was encountered during drilling.	Treadwell&Rollo
TEST (Project No.: 3918.01 Figure: C-

PRO	OJEC	T:			160 NORTH MAIN STREET Milpitas, California Log of Bo	oring	g EB	8-9	PA	GE 1 (DF 1
Borii	ng loca	ation:		See Si	te Plan, Figure 2	Logg	ed by:	M. G	ibbons		•
	starte			5/14/04		Drille	d By:	Greg	g Drillir	ng	
	ng met			Direct							
	nmer w				Hammer type:		LABOR	ATOR'	Y TEST	DATA	
	pler:	Ged MPLI	oprob				D 0.7	igth t		. %	₽ .+
DEPTH (feet)	Sampler Type		SPT C	LITHOLOGY	MATERIAL DESCRIPTION	Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
1-	DP			SP	SAND (SP) yellow-brown, non-plastic, no odor						
2-	ALS DP	Ħ	1		-	1					
3-	ALS	٩	i		CLAY (CL)	1					
4-	DP			CL	dark brown/gray, soft, moist, plastic, no odor	1					
5-	1	Ш	1			1					
6-	1				-	1					
7-	1				-	1					
8-	-				_	1					
9-	-				-	-					
10-	-				-	-					
11-					-						
12-	_				-						
13-	_				<u>-</u>	_					
14-					_	_					
15-	_				<u>-</u>						
16-					_	_					
17-					<u>-</u>	_					
18-]				<u>-</u>	_					
19-]				<u>-</u>	_					
20-					_						
21-					_						
22-					_						
23-					_						
23-											
7/9 LC 25					_						
G 25-					_						
26-					-						
27-	1				-						
28-					-	1					
ම් 29 –	1				-	1					
bac	ing termin kfilled wit ountered	th ceme	ent grou	ut. Grour	round surface. Boring idwater was not	1	Frea	dwe		Rolk	D
EST GE	ourierec	a uunini(u nili i(4.		Project N	No.:	8.01	Figure:		C-9
=							501	5.5 1			

APPENDIX D
McCampbell Analytical Laboratory Reports

June 03, 2004

Peter Cusack Treadwell & Rollo 555 Montgomery St, Suite 1300 San Francisco, CA 94111

TEL: 415-955-9040 FAX 415-955-9041

RE:

Dear Peter Cusack:

Torrent Laboratory, Inc. received 42 samples on 5/17/2004 for the analyses presented in the following report.

Order No.: 0405081

All data for associated QC met EPA or Laboratory specification except where noted in the case narative.

Torrent laboratory Inc. is certified by the State of California, ELAP #1991. If you have any question regarding these tests results, please feel free to contact Project Management Team at (408)263-5258;ext: 204.

Sincerely,	
Laboratory Director	Data
Laboratory Director	Date

Torrent Laboratory, Inc.

CLIENT: Treadwell & Rollo

Project:

Lab Order: 0405081

CASE NARRATIVE

Date: 03-Jun-04

Note: For 8260 the Surrogate revovery is outside the control limit due to possible matrix interference.

Note: Diesel reporting limit increased due to presence of unknown hydrocarbons in the diesel range.

Note: Reporting limit of diesel and oil increased due to limited sample volume available.

Note: Oil & Grease MS/MSD is bias low possibly due to matrix effect of spiked sample. LCS/LCSD supports data quality. Note: Reporting limits increased due to high level of heavy hydrocarbons.

Note: The 8270 Surrogate recovery of 2-Fluorobiphenyl falls outside control range due to possible matrix interference.

Note: Surrogate recovery of p-Terphenyl-d14 falls outside control range due to possible matrix interference:

The MSD recovery is above the range for 2,4-Dinitrotoluene due to possible matrix interference. Note: RPD is outside the control limit, however recoveries are within the renge for MS/MSD.

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-6-1.5 Lab Sample ID: 0405081-001A

Sample Location: Milpitas Library Date Prepared: 5/21/2004-5/26/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	7	3	21.0	ND	mg/Kg
TPH (Gasoline)	SW8015B	5/26/2004	0.1	1	0.100	ND	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	3	12.0	204	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	3	50-150	104	%REC
Surr: Trifluorotoluene	SW8015B	5/26/2004	0	1	65-135	77.8	%REC

Note: Reporting limits increased due to high level of heavy hydrocarbons.

Certified Analytical Report of Purgeable Volatile Organics

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-6-1.5 Lab Sample ID: 0405081-001A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
1,1,1,2-Tetrachloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1,1-Trichloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1,2,2-Tetrachloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1,2-Trichloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1-Dichloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1-Dichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1-Dichloropropene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2,3-Trichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2,3-Trichloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2,4-Trichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2,4-Trimethylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dibromo-3-chloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dibromoethane (EDB)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dichloroethane (EDC)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dichloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,3,5-Trimethylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,3-Dichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,3-Dichloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,4-Dichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
2,2-Dichloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
2-Chloroethyl vinyl ether	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
2-Chlorotoluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
4-Chlorotoluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
4-Isopropyltoluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Benzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Bromobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Bromochloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Bromodichloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Bromoform	SW8260B	5/22/2004	10	1	10	ND	μg/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Certified Analytical Report of Purgeable Volatile Organics

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-6-1.5 Lab Sample ID: 0405081-001A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Carbon tetrachloride	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Chlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Chloroform	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Chloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
cis-1,2-Dichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Dibromochloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Dibromomethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Dichlorodifluoromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Ethyl tert-butyl ether (ETBE)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Freon-113	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Hexachlorobutadiene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Isopropyl ether (IPE)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Isopropylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Methyl tert-butyl ether (MTBE)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Methylene chloride	SW8260B	5/22/2004	50	1	50	ND	μg/Kg
Naphthalene	SW8260B	5/22/2004	20	1	20	ND	μg/Kg
n-Butylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
n-Propylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
sec-Butylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Styrene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
t-Butyl alcohol (t-Butanol)	SW8260B	5/22/2004	50	1	50	ND	μg/Kg
tert-Amyl methyl ether (TAME)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
tert-Butylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Tetrachloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Toluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
trans-1,2-Dichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
trans-1,3-Dichloropropene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Trichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Trichlorofluoromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Certified Analytical Report of Purgeable Volatile Organics

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-6-1.5 Lab Sample ID: 0405081-001A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Vinyl chloride	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Surr: 4-Bromofluorobenzene	SW8260B	5/22/2004	0	1	65-135	68.0	%REC
Surr: Dibromofluoromethane	SW8260B	5/22/2004	0	1	65-135	84.5	%REC
Surr: Toluene-d8	SW8260B	5/22/2004	0	1	65-135	92.4	%REC

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-6-1.5 Lab Sample ID: 0405081-001A

Sample Location: Milpitas Library Date Prepared: 5/20/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Antimony	SW6010B	5/20/2004	1.419	1	1.2	ND	mg/Kg
Arsenic	SW6010B	5/20/2004	1.747	1	1.5	ND	mg/Kg
Barium	SW6010B	5/20/2004	1.329	1	1.1	110	mg/Kg
Beryllium	SW6010B	5/20/2004	0.84	1	0.72	ND	mg/Kg
Cadmium	SW6010B	5/20/2004	0.251	1	0.22	2.4	mg/Kg
Chromium	SW6010B	5/20/2004	0.218	1	0.19	31	mg/Kg
Cobalt	SW6010B	5/20/2004	0.182	1	0.16	6.2	mg/Kg
Copper	SW6010B	5/20/2004	0.242	1	0.21	17	mg/Kg
Lead	SW6010B	5/20/2004	0.369	1	0.32	6.9	mg/Kg
Mercury	SW7471A	5/21/2004	0.1	1	0.074	ND	mg/Kg
Molybdenum	SW6010B	5/20/2004	0.245	1	0.21	ND	mg/Kg
Nickel	SW6010B	5/20/2004	0.199	1	0.17	46	mg/Kg
Selenium	SW6010B	5/20/2004	0.781	1	0.67	ND	mg/Kg
Silver	SW6010B	5/20/2004	0.287	1	0.25	ND	mg/Kg
Thallium	SW6010B	5/20/2004	2.666	1	2.3	ND	mg/Kg
Vanadium	SW6010B	5/20/2004	0.793	1	0.68	29	mg/Kg
Zinc	SW6010B	5/20/2004	2.073	1	1.8	46	mg/Kg

Certified Analytical Report of Wet Chemistry

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Client Sample ID: EB-6-1.5 Lab Sample ID: 0405081-001A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Oil & Grease, Total	SM 5520 Mod.	5/21/2004	50	1	50	2200	mg/Kg

Certified Analytical Report of Nonhalogenated Volatiles

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-6-4.5 Lab Sample ID: 0405081-002A

Sample Location: Milpitas Library Date Prepared: 5/25/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Benzene	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Toluene	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Surr: Trifluorotoluene	SW8021B	5/26/2004	0	1	65-135	91.1	%REC

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-6-4.5 Lab Sample ID: 0405081-002A

Sample Location: Milpitas Library Date Prepared: 5/21/2004-5/26/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/24/2004	2	1	2.00	ND	mg/Kg
TPH (Gasoline)	SW8015B	5/26/2004	0.1	1	0.100	ND	mg/Kg
TPH (Oil)	SW8015B	5/24/2004	4	1	4.00	ND	mg/Kg
Surr: Pentacosane	SW8015B	5/24/2004	0	1	50-150	104	%REC
Surr: Trifluorotoluene	SW8015B	5/26/2004	0	1	65-135	102	%REC

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-6-4.5 Lab Sample ID: 0405081-002A

Sample Location: Milpitas Library Date Prepared: 5/20/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Cadmium	SW6010B	5/20/2004	0.251	1	0.25	2.1	mg/Kg
Chromium	SW6010B	5/20/2004	0.218	1	0.21	59	mg/Kg
Lead	SW6010B	5/20/2004	0.369	1	0.36	510	mg/Kg
Nickel	SW6010B	5/20/2004	0.199	1	0.20	51	mg/Kg
Zinc	SW6010B	5/20/2004	2.073	1	2.0	120	mg/Kg

Certified Analytical Report of Nonhalogenated Volatiles

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-10-1.5 Lab Sample ID: 0405081-003A

Sample Location: Milpitas Library Date Prepared: 5/25/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Benzene	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Toluene	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Surr: Trifluorotoluene	SW8021B	5/26/2004	0	1	65-135	85.2	%REC

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-10-1.5 Lab Sample ID: 0405081-003A

Sample Location: Milpitas Library Date Prepared: 5/21/2004-5/26/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/24/2004	2	1	2.00	ND	mg/Kg
TPH (Gasoline)	SW8015B	5/26/2004	0.1	1	0.100	ND	mg/Kg
TPH (Oil)	SW8015B	5/24/2004	4	1	4.00	ND	mg/Kg
Surr: Pentacosane	SW8015B	5/24/2004	0	1	50-150	87.6	%REC
Surr: Trifluorotoluene	SW8015B	5/26/2004	0	1	65-135	95.5	%REC

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-10-1.5 Lab Sample ID: 0405081-003A

Sample Location: Milpitas Library Date Prepared: 5/20/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Arsenic	SW6010B	5/20/2004	1.747	1	1.6	ND	mg/Kg
Barium	SW6010B	5/20/2004	1.329	1	1.2	150	mg/Kg
Cadmium	SW6010B	5/20/2004	0.251	1	0.24	2.5	mg/Kg
Chromium	SW6010B	5/20/2004	0.218	1	0.20	43	mg/Kg
Lead	SW6010B	5/20/2004	0.369	1	0.35	7.6	mg/Kg
Mercury	SW7471A	5/21/2004	0.1	1	0.095	ND	mg/Kg
Selenium	SW6010B	5/20/2004	0.781	1	0.73	ND	mg/Kg
Silver	SW6010B	5/20/2004	0.287	1	0.27	ND	mg/Kg

Certified Analytical Report of Wet Chemistry

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-10-1.5 Lab Sample ID: 0405081-003A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Oil & Grease Total	SM 5520 Mod	5/21/2004	50	1	50	< 50	ma/Ka

Certified Analytical Report of Nonhalogenated Volatiles

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-10-3.5 Lab Sample ID: 0405081-004A

Sample Location: Milpitas Library Date Prepared: 5/25/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Benzene	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Toluene	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Surr: Trifluorotoluene	SW8021B	5/26/2004	0	1	65-135	85.9	%REC

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-10-3.5 Lab Sample ID: 0405081-004A

Sample Location: Milpitas Library Date Prepared: 5/21/2004-5/26/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/24/2004	2	1	2.00	ND	mg/Kg
TPH (Gasoline)	SW8015B	5/26/2004	0.1	1	0.100	ND	mg/Kg
TPH (Oil)	SW8015B	5/24/2004	4	1	4.00	ND	mg/Kg
Surr: Pentacosane	SW8015B	5/24/2004	0	1	50-150	97.7	%REC
Surr: Trifluorotoluene	SW8015B	5/26/2004	0	1	65-135	94.6	%REC

<u>Certified Analytical Report of</u> <u>SemiVolatile Organics By GC/MS</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-10-3.5 Lab Sample ID: 0405081-004A

Sample Location: Milpitas Library Date Prepared: 5/19/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2005

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
1,2,4-Trichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,2-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,3-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,4-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4,5-Trichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4,6-Trichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dimethylphenol	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
2,4-Dinitrophenol	SW8270C	5/22/2004	1.7	1	1.7	ND	mg/Kg
2,4-Dinitrotoluene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,6-Dinitrotoluene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Chloronaphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Chlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Methylnaphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Nitrophenol	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
3,3'-Dichlorobenzidine	SW8270C	5/22/2004	1.7	1	1.7	ND	mg/Kg
3-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
3-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4,6-Dinitro-2-methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Bromophenyl phenyl ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chloro-3-methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chloroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chlorophenyl phenyl ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Nitrophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthylene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-10-3.5 Lab Sample ID: 0405081-004A

Sample Location: Milpitas Library Date Prepared: 5/19/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2005

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
				1			
Aniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benz(a)anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzidine	SW8270C	5/22/2004	3.3	1	3.3	ND	mg/Kg
Benzo(a)pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(b)fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(g,h,i)perylene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(k)fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzoic acid	SW8270C	5/22/2004	6.66	1	6.7	ND	mg/Kg
Benzyl alcohol	SW8270C	5/22/2004	6.66	1	6.7	ND	mg/Kg
Bis(2-chloroethoxy)methane	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroethyl)ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroisopropyl)ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-ethylhexyl)phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Butyl benzyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Chrysene	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
Dibenz(a,h)anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Dibenzofuran	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Diethyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Dimethyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Di-n-butyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Di-n-octyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Fluorene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobutadiene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorocyclopentadiene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachloroethane	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Indeno(1,2,3-cd)pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Isophorone	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

<u>Certified Analytical Report of</u> <u>SemiVolatile Organics By GC/MS</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-10-3.5 Lab Sample ID: 0405081-004A

Sample Location: Milpitas Library Date Prepared: 5/19/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2005

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Naphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Nitrobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodimethylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodi-n-propylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodiphenylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Pentachlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Phenanthrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Phenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Pyridine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Surr: 2,4,6-Tribromophenol	SW8270C	5/22/2004	0	1	19-122	24.6	%REC
Surr: 2-Fluorobiphenyl	SW8270C	5/22/2004	0	1	24-90	19.7	%REC
Surr: 2-Fluorophenol	SW8270C	5/22/2004	0	1	25-121	26.4	%REC
Surr: Nitrobenzene-d5	SW8270C	5/22/2004	0	1	17-96	24.2	%REC
Surr: Phenol-d6	SW8270C	5/22/2004	0	1	16-91	32.4	%REC
Surr: p-Terphenyl-d14	SW8270C	5/22/2004	0	1	49-138	53.6	%REC

Note: Surrogate recovery of 2-Fluorobiphenyl falls outside control range due to possible matrix interference.

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-10-3.5 Lab Sample ID: 0405081-004A

Sample Location: Milpitas Library Date Prepared: 5/20/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Cadmium	SW6010B	5/20/2004	0.251	1	0.23	2.7	mg/Kg
Chromium	SW6010B	5/20/2004	0.218	1	0.20	49	mg/Kg
Lead	SW6010B	5/20/2004	0.369	1	0.34	7.3	mg/Kg
Nickel	SW6010B	5/20/2004	0.199	1	0.19	69	mg/Kg
Zinc	SW6010B	5/20/2004	2.073	1	1.9	52	mg/Kg

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-7-1.5 Lab Sample ID: 0405081-006A

Sample Location: Milpitas Library Date Prepared: 5/21/2004-5/26/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	2	3	6.00	ND	mg/Kg
TPH (Gasoline)	SW8015B	5/26/2004	0.1	1	0.100	ND	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	3	12.0	162	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	3	50-150	112	%REC
Surr: Trifluorotoluene	SW8015B	5/26/2004	0	1	65-135	87.8	%REC

Note: Reporting limits increased due to high level of heavy hydrocarbons.

<u>Certified Analytical Report of</u> <u>Purgeable Volatile Organics</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-7-1.5 Lab Sample ID: 0405081-006A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
1,1,1,2-Tetrachloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1,1-Trichloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1,2,2-Tetrachloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1,2-Trichloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1-Dichloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1-Dichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1-Dichloropropene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2,3-Trichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2,3-Trichloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2,4-Trichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2,4-Trimethylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dibromo-3-chloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dibromoethane (EDB)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dichloroethane (EDC)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dichloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,3,5-Trimethylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,3-Dichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,3-Dichloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,4-Dichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
2,2-Dichloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
2-Chloroethyl vinyl ether	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
2-Chlorotoluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
4-Chlorotoluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
4-Isopropyltoluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Benzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Bromobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Bromochloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Bromodichloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
3romoform 3romof	SW8260B	5/22/2004	10	1	10	ND	μg/Kg

Certified Analytical Report of Purgeable Volatile Organics

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-7-1.5 Lab Sample ID: 0405081-006A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Carbon tetrachloride	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Chlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Chloroform	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Chloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
cis-1,2-Dichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Dibromochloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Dibromomethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Dichlorodifluoromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Ethyl tert-butyl ether (ETBE)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Freon-113	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Hexachlorobutadiene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Isopropyl ether (IPE)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Isopropylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Methyl tert-butyl ether (MTBE)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Methylene chloride	SW8260B	5/22/2004	50	1	50	ND	μg/Kg
Naphthalene	SW8260B	5/22/2004	20	1	20	ND	μg/Kg
n-Butylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
n-Propylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
sec-Butylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Styrene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
t-Butyl alcohol (t-Butanol)	SW8260B	5/22/2004	50	1	50	ND	μg/Kg
tert-Amyl methyl ether (TAME)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
tert-Butylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Tetrachloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Toluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
trans-1,2-Dichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
trans-1,3-Dichloropropene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Trichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Trichlorofluoromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg

Certified Analytical Report of Purgeable Volatile Organics

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

> Treadwell & Rollo Date Reported: 6/3/2004

EB-7-1.5 **Client Sample ID:**

Lab Sample ID: 0405081-006A Milpitas Library **Date Prepared:** 5/22/2004 Sample Location:

SOIL Sample Matrix: **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Vinyl chloride	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Surr: 4-Bromofluorobenzene	SW8260B	5/22/2004	0	1	65-135	64.1	%REC
Surr: Dibromofluoromethane	SW8260B	5/22/2004	0	1	65-135	113	%REC
Surr: Toluene-d8	SW8260B	5/22/2004	0	1	65-135	90.0	%REC

Note: Surrogate outside the control limit due to possible matrix interference.

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-7-1.5 Lab Sample ID: 0405081-006A

Sample Location: Milpitas Library Date Prepared: 5/20/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Lead	SW6010B	5/20/2004	0.369	1	0.37	8.6	mg/Kg

Certified Analytical Report of Nonhalogenated Volatiles

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-7-3.0 Lab Sample ID: 0405081-007A

Sample Location: Milpitas Library Date Prepared: 5/25/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Benzene	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Toluene	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Surr: Trifluorotoluene	SW8021B	5/26/2004	0	1	65-135	93.6	%REC

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Client Sample ID: EB-7-3.0 Lab Sample ID: 0405081-007A

Sample Location: Milpitas Library Date Prepared: 5/26/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Gasoline)	SW8015B	5/26/2004	0.1	1	0.100	ND	mg/Kg
Surr: Trifluorotoluene	SW8015B	5/26/2004	0	1	65-135	102	%REC

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-7-3.0 Lab Sample ID: 0405081-007A

Sample Location: Milpitas Library Date Prepared: 5/19/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
1,2,4-Trichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,2-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,3-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,4-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4,5-Trichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4,6-Trichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dimethylphenol	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
2,4-Dinitrophenol	SW8270C	5/22/2004	1.7	1	1.7	ND	mg/Kg
2,4-Dinitrotoluene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,6-Dinitrotoluene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Chloronaphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Chlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Methylnaphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Nitrophenol	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
3,3'-Dichlorobenzidine	SW8270C	5/22/2004	1.7	1	1.7	ND	mg/Kg
3-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
3-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4,6-Dinitro-2-methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Bromophenyl phenyl ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chloro-3-methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chloroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chlorophenyl phenyl ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Nitrophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthylene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-7-3.0 Lab Sample ID: 0405081-007A

Sample Location: Milpitas Library Date Prepared: 5/19/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis	Date	RL	Dilution	MRL	Result	Units
	Method	Analyzed		Factor			
Aniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benz(a)anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzidine	SW8270C	5/22/2004	3.3	1	3.3	ND	mg/Kg
Benzo(a)pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(b)fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(g,h,i)perylene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(k)fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzoic acid	SW8270C	5/22/2004	6.66	1	6.7	ND	mg/Kg
Benzyl alcohol	SW8270C	5/22/2004	6.66	1	6.7	ND	mg/Kg
Bis(2-chloroethoxy)methane	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroethyl)ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroisopropyl)ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-ethylhexyl)phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Butyl benzyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Chrysene	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
Dibenz(a,h)anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Dibenzofuran	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Diethyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Dimethyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Di-n-butyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Di-n-octyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Fluorene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobutadiene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorocyclopentadiene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachloroethane	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Indeno(1,2,3-cd)pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Isophorone	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg

<u>Certified Analytical Report of</u> <u>SemiVolatile Organics By GC/MS</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Client Sample ID: EB-7-3.0 Lab Sample ID: 0405081-007A

Sample Location: Milpitas Library Date Prepared: 5/19/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Naphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Nitrobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodimethylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodi-n-propylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodiphenylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Pentachlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Phenanthrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Phenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Pyridine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Surr: 2,4,6-Tribromophenol	SW8270C	5/22/2004	0	1	19-122	35.8	%REC
Surr: 2-Fluorobiphenyl	SW8270C	5/22/2004	0	1	24-90	23.2	%REC
Surr: 2-Fluorophenol	SW8270C	5/22/2004	0	1	25-121	33.1	%REC
Surr: Nitrobenzene-d5	SW8270C	5/22/2004	0	1	17-96	30.6	%REC
Surr: Phenol-d6	SW8270C	5/22/2004	0	1	16-91	41.2	%REC
Surr: p-Terphenyl-d14	SW8270C	5/22/2004	0	1	49-138	56.5	%REC

Note: Surrogate recovery of 2-Fluorobiphenyl falls outside control range due to possible matrix interference.

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-7-3.0 Lab Sample ID: 0405081-007A

Sample Location: Milpitas Library Date Prepared: 5/20/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Cadmium	SW6010B	5/20/2004	0.251	1	0.24	2.9	mg/Kg
Chromium	SW6010B	5/20/2004	0.218	1	0.21	54	mg/Kg
Lead	SW6010B	5/21/2004	0.369	1	0.36	8.0	mg/Kg
Nickel	SW6010B	5/20/2004	0.199	1	0.19	76	mg/Kg
Zinc	SW6010B	5/20/2004	2.073	1	2.0	59	mg/Kg

Certified Analytical Report of Nonhalogenated Volatiles

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Client Sample ID: EB-7-5.0 Lab Sample ID: 0405081-008A

Sample Location: Milpitas Library Date Prepared: 5/25/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Benzene	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Toluene	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Surr: Trifluorotoluene	SW8021B	5/26/2004	0	1	65-135	71.4	%REC

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-7-5.0 Lab Sample ID: 0405081-008A

Sample Location: Milpitas Library Date Prepared: 5/21/2004-5/26/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	2	6	12.0	ND	mg/Kg
TPH (Gasoline)	SW8015B	5/26/2004	0.1	1	0.100	ND	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	6	24.0	380	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	6	50-150	115	%REC
Surr: Trifluorotoluene	SW8015B	5/26/2004	0	1	65-135	82.6	%REC

Note: Reporting limits increased due to high level of heavy hydrocarbons.

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-7-5.0 Lab Sample ID: 0405081-008A

Sample Location: Milpitas Library Date Prepared: 5/20/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Lead	SW6010B	5/20/2004	0.369	1	0.33	6.7	mg/Kg

Certified Analytical Report of Wet Chemistry

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-7-5.0 Lab Sample ID: 0405081-008A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Oil & Grease, Total	SM 5520 Mod.	5/21/2004	50	1	50	3400	mg/Kg

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Client Sample ID: EB-3-1.5 Lab Sample ID: 0405081-009A

Sample Location: Milipitas Library Date Prepared: 5/21/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/24/2004	2	1	2.00	ND	mg/Kg
TPH (Oil)	SW8015B	5/24/2004	4	1	4.00	ND	mg/Kg
Surr: Pentacosane	SW8015B	5/24/2004	0	1	50-150	92.1	%REC

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Lab Sample ID: 0405081-009A

Date Prepared: 5/19/2004

Client Sample ID: EB-3-1.5

Sample Location: Milipitas Library

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis	Date	RL	Dilution	MRL	Result	Units
	Method	Analyzed		Factor			
1,2,4-Trichlorobenzene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
1,2-Dichlorobenzene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
1,3-Dichlorobenzene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
1,4-Dichlorobenzene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2,4,5-Trichlorophenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2,4,6-Trichlorophenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2,4-Dichlorophenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2,4-Dimethylphenol	SW8270C	5/23/2004	0.66	10	6.6	ND	mg/Kg
2,4-Dinitrophenol	SW8270C	5/23/2004	1.7	10	17	ND	mg/Kg
2,4-Dinitrotoluene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2,6-Dinitrotoluene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2-Chloronaphthalene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2-Chlorophenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2-Methylnaphthalene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2-Methylphenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2-Nitroaniline	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2-Nitrophenol	SW8270C	5/23/2004	0.66	10	6.6	ND	mg/Kg
3,3´-Dichlorobenzidine	SW8270C	5/23/2004	1.7	10	17	ND	mg/Kg
3-Methylphenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
3-Nitroaniline	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4,6-Dinitro-2-methylphenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4-Bromophenyl phenyl ether	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4-Chloro-3-methylphenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4-Chloroaniline	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4-Chlorophenyl phenyl ether	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4-Methylphenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4-Nitroaniline	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4-Nitrophenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Acenaphthene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Acenaphthylene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
•							

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Lab Sample ID: 0405081-009A

Date Prepared: 5/19/2004

Client Sample ID: EB-3-1.5

Sample Location: Milipitas Library

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
	Witthou	Anaryzeu		ractor			
Aniline	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Anthracene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Benz(a)anthracene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Benzidine	SW8270C	5/23/2004	3.3	10	33	ND	mg/Kg
Benzo(a)pyrene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Benzo(b)fluoranthene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Benzo(g,h,i)perylene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Benzo(k)fluoranthene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Benzoic acid	SW8270C	5/23/2004	6.66	10	67	ND	mg/Kg
Benzyl alcohol	SW8270C	5/23/2004	6.66	10	67	ND	mg/Kg
Bis(2-chloroethoxy)methane	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Bis(2-chloroethyl)ether	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Bis(2-chloroisopropyl)ether	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Bis(2-ethylhexyl)phthalate	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Butyl benzyl phthalate	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Chrysene	SW8270C	5/23/2004	0.66	10	6.6	ND	mg/Kg
Dibenz(a,h)anthracene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Dibenzofuran	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Diethyl phthalate	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Dimethyl phthalate	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Di-n-butyl phthalate	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Di-n-octyl phthalate	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Fluoranthene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Fluorene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Hexachlorobenzene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Hexachlorobutadiene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Hexachlorocyclopentadiene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Hexachloroethane	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Indeno(1,2,3-cd)pyrene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Isophorone	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg

<u>Certified Analytical Report of</u> <u>SemiVolatile Organics By GC/MS</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Lab Sample ID: 0405081-009A

Date Prepared: 5/19/2004

Client Sample ID: EB-3-1.5

Sample Location: Milipitas Library

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Naphthalene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Nitrobenzene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
N-Nitrosodimethylamine	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
N-Nitrosodi-n-propylamine	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
N-Nitrosodiphenylamine	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Pentachlorophenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Phenanthrene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Phenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Pyrene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Pyridine	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Surr: 2,4,6-Tribromophenol	SW8270C	5/23/2004	0	10	19-122	41.8	%REC
Surr: 2-Fluorobiphenyl	SW8270C	5/23/2004	0	10	24-90	25.9	%REC
Surr: 2-Fluorophenol	SW8270C	5/23/2004	0	10	25-121	40.2	%REC
Surr: Nitrobenzene-d5	SW8270C	5/23/2004	0	10	17-96	31.7	%REC
Surr: Phenol-d6	SW8270C	5/23/2004	0	10	16-91	52.4	%REC
Surr: p-Terphenyl-d14	SW8270C	5/23/2004	0	10	49-138	66.2	%REC

Note: Reporting limits increased due to high level of heavy hydrocarbons.

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Lab Sample ID: 0405081-009A

Date Prepared: 5/20/2004

Client Sample ID: EB-3-1.5

Sample Location: Milipitas Library

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Cadmium	SW6010B	5/20/2004	0.251	1	0.22	2.0	mg/Kg
Chromium	SW6010B	5/20/2004	0.218	1	0.19	23	mg/Kg
Lead	SW6010B	5/20/2004	0.369	1	0.33	4.7	mg/Kg
Nickel	SW6010B	5/20/2004	0.199	1	0.18	32	mg/Kg
Zinc	SW6010B	5/20/2004	2.073	1	1.9	42	mg/Kg

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-3-3.0 Lab Sample ID: 0405081-010A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/24/2004	2	1	2.00	ND	mg/Kg
TPH (Oil)	SW8015B	5/24/2004	4	1	4.00	ND	mg/Kg
Surr: Pentacosane	SW8015B	5/24/2004	0	1	50-150	80.6	%REC

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-3-3.0 Lab Sample ID: 0405081-010A

Sample Location: Milpitas Library Date Prepared: 5/20/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Antimony	SW6010B	5/20/2004	1.419	1	1.2	ND	mg/Kg
Arsenic	SW6010B	5/20/2004	1.747	1	1.5	ND	mg/Kg
Barium	SW6010B	5/20/2004	1.329	1	1.2	170	mg/Kg
Beryllium	SW6010B	5/20/2004	0.84	1	0.74	ND	mg/Kg
Cadmium	SW6010B	5/20/2004	0.251	1	0.22	2.9	mg/Kg
Chromium	SW6010B	5/20/2004	0.218	1	0.19	50	mg/Kg
Cobalt	SW6010B	5/20/2004	0.182	1	0.16	11	mg/Kg
Copper	SW6010B	5/20/2004	0.242	1	0.21	30	mg/Kg
Lead	SW6010B	5/20/2004	0.369	1	0.32	14	mg/Kg
Mercury	SW7471A	5/21/2004	0.1	1	0.085	ND	mg/Kg
Molybdenum	SW6010B	5/20/2004	0.245	1	0.21	ND	mg/Kg
Nickel	SW6010B	5/20/2004	0.199	1	0.17	73	mg/Kg
Selenium	SW6010B	5/20/2004	0.781	1	0.69	ND	mg/Kg
Silver	SW6010B	5/20/2004	0.287	1	0.25	ND	mg/Kg
Thallium	SW6010B	5/20/2004	2.666	1	2.3	ND	mg/Kg
Vanadium	SW6010B	5/20/2004	0.793	1	0.70	43	mg/Kg
Zinc	SW6010B	5/20/2004	2.073	1	1.8	61	mg/Kg

Certified Analytical Report of Nonhalogenated Volatiles

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Client Sample ID: EB-3-5.0 Lab Sample ID: 0405081-011A

Sample Location: Milpitas Library Date Prepared: 5/25/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Benzene	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Toluene	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Surr: Trifluorotoluene	SW8021B	5/26/2004	0	1	65-135	88.6	%REC

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-3-5.0 Lab Sample ID: 0405081-011A

Sample Location: Milpitas Library Date Prepared: 5/26/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Gasoline)	SW8015B	5/26/2004	0.1	1	0.100	ND	mg/Kg
Surr: Trifluorotoluene	SW8015B	5/26/2004	0	1	65-135	99.2	%REC

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-3-5.0 Lab Sample ID: 0405081-011A

Sample Location: Milpitas Library Date Prepared: 5/20/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Arsenic	SW6010B	5/20/2004	1.747	1	1.8	ND	mg/Kg
Barium	SW6010B	5/20/2004	1.329	1	1.3	200	mg/Kg
Cadmium	SW6010B	5/21/2004	0.251	1	0.25	2.5	mg/Kg
Chromium	SW6010B	5/20/2004	0.218	1	0.22	51	mg/Kg
Lead	SW6010B	5/20/2004	0.369	1	0.37	5.9	mg/Kg
Mercury	SW7471A	5/21/2004	0.1	1	0.073	ND	mg/Kg
Selenium	SW6010B	5/20/2004	0.781	1	0.79	ND	mg/Kg
Silver	SW6010B	5/20/2004	0.287	1	0.29	ND	mg/Kg

Certified Analytical Report of Wet Chemistry

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-3-5.0 Lab Sample ID: 0405081-011A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Oil & Grease Total	SM 5520 Mod	5/21/2004	50	1	50	160	ma/Ka

Certified Analytical Report of Nonhalogenated Volatiles

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-2-1.5 Lab Sample ID: 0405081-012A

Sample Location: Milpitas Library Date Prepared: 5/25/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Benzene	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Toluene	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8021B	5/26/2004	10	1	10	ND	μg/Kg
Surr: Trifluorotoluene	SW8021B	5/26/2004	0	1	65-135	95.1	%REC

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-2-1.5 Lab Sample ID: 0405081-012A

Sample Location: Milpitas Library Date Prepared: 5/26/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Gasoline)	SW8015B	5/26/2004	0.1	1	0.100	ND	mg/Kg
Surr: Trifluorotoluene	SW8015B	5/26/2004	0	1	65-135	107	%REC

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-2-1.5 Lab Sample ID: 0405081-012A

Sample Location: Milpitas Library Date Prepared: 5/20/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Cadmium	SW6010B	5/21/2004	0.251	1	0.24	1.6	mg/Kg
Chromium	SW6010B	5/20/2004	0.218	1	0.21	17	mg/Kg
Lead	SW6010B	5/20/2004	0.369	1	0.35	4.3	mg/Kg
Nickel	SW6010B	5/20/2004	0.199	1	0.19	22	mg/Kg
Zinc	SW6010B	5/20/2004	2.073	1	2.0	34	mg/Kg

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-2-3.0 Lab Sample ID: 0405081-013A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	2	1	2.00	ND	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	1	4.00	ND	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	1	50-150	103	%REC

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-2-3.0 Lab Sample ID: 0405081-013A

Sample Location: Milpitas Library Date Prepared: 5/20/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Lead	SW6010B	5/21/2004	0.369	1	0.35	9.2	mg/Kg

Certified Analytical Report of Wet Chemistry

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-2-3.0 Lab Sample ID: 0405081-013A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Oil & Grease, Total	SM 5520 Mod.	5/21/2004	50	1	50	< 50	mg/Kg

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-1-1.5 Lab Sample ID: 0405081-015A

Sample Location: Milpitas Library Date Prepared: 5/21/2004-5/26/2004

Sample Matrix: SOIL

Date/Time Sampled 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	2	5	10.0	ND	mg/Kg
TPH (Gasoline)	SW8015B	5/27/2004	0.1	1	0.100	ND	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	5	20.0	390	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	5	50-150	150	%REC
Surr: Trifluorotoluene	SW8015B	5/27/2004	0	1	65-135	75.2	%REC

Note: Reporting limits increased due to high level of heavy hydrocarbons.

Certified Analytical Report of Purgeable Volatile Organics

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-1-1.5 Lab Sample ID: 0405081-015A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
	Michie	Anaryzeu		ractor			
1,1,1,2-Tetrachloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1,1-Trichloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1,2,2-Tetrachloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1,2-Trichloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1-Dichloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1-Dichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1-Dichloropropene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2,3-Trichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2,3-Trichloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2,4-Trichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2,4-Trimethylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dibromo-3-chloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dibromoethane (EDB)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dichloroethane (EDC)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dichloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,3,5-Trimethylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,3-Dichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,3-Dichloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,4-Dichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
2,2-Dichloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
2-Chloroethyl vinyl ether	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
2-Chlorotoluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
4-Chlorotoluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
4-Isopropyltoluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Benzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Bromobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Bromochloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Bromodichloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Bromoform	SW8260B	5/22/2004	10	1	10	ND	μg/Kg

Certified Analytical Report of Purgeable Volatile Organics

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Client Sample ID: EB-1-1.5 Lab Sample ID: 0405081-015A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Carbon tetrachloride	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Chlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Chloroform	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Chloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
cis-1,2-Dichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Dibromochloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Dibromomethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Dichlorodifluoromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Ethyl tert-butyl ether (ETBE)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Freon-113	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Hexachlorobutadiene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Isopropyl ether (IPE)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Isopropylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Methyl tert-butyl ether (MTBE)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Methylene chloride	SW8260B	5/22/2004	50	1	50	ND	μg/Kg
Naphthalene	SW8260B	5/22/2004	20	1	20	ND	μg/Kg
n-Butylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
n-Propylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
sec-Butylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Styrene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
t-Butyl alcohol (t-Butanol)	SW8260B	5/22/2004	50	1	50	ND	μg/Kg
tert-Amyl methyl ether (TAME)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
tert-Butylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Tetrachloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Toluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
trans-1,2-Dichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
trans-1,3-Dichloropropene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Trichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Trichlorofluoromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-1-1.5 Lab Sample ID: 0405081-015A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Vinyl chloride	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Surr: 4-Bromofluorobenzene	SW8260B	5/22/2004	0	1	65-135	71.5	%REC
Surr: Dibromofluoromethane	SW8260B	5/22/2004	0	1	65-135	90.2	%REC
Surr: Toluene-d8	SW8260B	5/22/2004	0	1	65-135	102	%REC

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-1-1.5 Lab Sample ID: 0405081-015A

Sample Location: Milpitas Library Date Prepared: 5/19/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis	Date	RL	Dilution	MRL	Result	Units
	Method	Analyzed		Factor			
1,2,4-Trichlorobenzene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
1,2-Dichlorobenzene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
1,3-Dichlorobenzene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
1,4-Dichlorobenzene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2,4,5-Trichlorophenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2,4,6-Trichlorophenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2,4-Dichlorophenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2,4-Dimethylphenol	SW8270C	5/23/2004	0.66	10	6.6	ND	mg/Kg
2,4-Dinitrophenol	SW8270C	5/23/2004	1.7	10	17	ND	mg/Kg
2,4-Dinitrotoluene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2,6-Dinitrotoluene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2-Chloronaphthalene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2-Chlorophenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2-Methylnaphthalene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2-Methylphenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2-Nitroaniline	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2-Nitrophenol	SW8270C	5/23/2004	0.66	10	6.6	ND	mg/Kg
3,3´-Dichlorobenzidine	SW8270C	5/23/2004	1.7	10	17	ND	mg/Kg
3-Methylphenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
3-Nitroaniline	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4,6-Dinitro-2-methylphenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4-Bromophenyl phenyl ether	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4-Chloro-3-methylphenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4-Chloroaniline	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4-Chlorophenyl phenyl ether	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4-Methylphenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4-Nitroaniline	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4-Nitrophenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Acenaphthene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Acenaphthylene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
•							

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Certified Analytical Report of SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

> Treadwell & Rollo **Date Reported:** 6/3/2004

Client Sample ID: EB-1-1.5

Lab Sample ID: 0405081-015A Milpitas Library **Date Prepared:** 5/19/2004 Sample Location:

SOIL Sample Matrix: **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
	Witthou	Anaryzeu		ractor			
Aniline	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Anthracene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Benz(a)anthracene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Benzidine	SW8270C	5/23/2004	3.3	10	33	ND	mg/Kg
Benzo(a)pyrene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Benzo(b)fluoranthene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Benzo(g,h,i)perylene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Benzo(k)fluoranthene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Benzoic acid	SW8270C	5/23/2004	6.66	10	67	ND	mg/Kg
Benzyl alcohol	SW8270C	5/23/2004	6.66	10	67	ND	mg/Kg
Bis(2-chloroethoxy)methane	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Bis(2-chloroethyl)ether	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Bis(2-chloroisopropyl)ether	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Bis(2-ethylhexyl)phthalate	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Butyl benzyl phthalate	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Chrysene	SW8270C	5/23/2004	0.66	10	6.6	ND	mg/Kg
Dibenz(a,h)anthracene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Dibenzofuran	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Diethyl phthalate	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Dimethyl phthalate	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Di-n-butyl phthalate	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Di-n-octyl phthalate	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Fluoranthene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Fluorene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Hexachlorobenzene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Hexachlorobutadiene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Hexachlorocyclopentadiene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Hexachloroethane	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Indeno(1,2,3-cd)pyrene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Isophorone	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

<u>Certified Analytical Report of</u> <u>SemiVolatile Organics By GC/MS</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Lab Sample ID: 0405081-015A

Date Prepared: 5/19/2004

Client Sample ID: EB-1-1.5

Sample Location: Milpitas Library

Sample Matrix: SOIL

Date/Time Sampled 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Naphthalene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Nitrobenzene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
N-Nitrosodimethylamine	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
N-Nitrosodi-n-propylamine	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
N-Nitrosodiphenylamine	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Pentachlorophenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Phenanthrene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Phenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Pyrene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Pyridine	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Surr: 2,4,6-Tribromophenol	SW8270C	5/23/2004	0	10	19-122	50.1	%REC
Surr: 2-Fluorobiphenyl	SW8270C	5/23/2004	0	10	24-90	46.0	%REC
Surr: 2-Fluorophenol	SW8270C	5/23/2004	0	10	25-121	61.4	%REC
Surr: Nitrobenzene-d5	SW8270C	5/23/2004	0	10	17-96	49.8	%REC
Surr: Phenol-d6	SW8270C	5/23/2004	0	10	16-91	81.8	%REC
Surr: p-Terphenyl-d14	SW8270C	5/23/2004	0	10	49-138	77.4	%REC

Note: Reporting limits increased due to high level of heavy hydrocarbons.

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-1-1.5 Lab Sample ID: 0405081-015A

Sample Location: Milpitas Library Date Prepared: 5/20/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Antimony	SW6010B	5/20/2004	1.419	1	1.3	ND	mg/Kg
Arsenic	SW6010B	5/20/2004	1.747	1	1.6	ND	mg/Kg
Barium	SW6010B	5/20/2004	1.329	1	1.2	110	mg/Kg
Beryllium	SW6010B	5/20/2004	0.84	1	0.76	ND	mg/Kg
Cadmium	SW6010B	5/20/2004	0.251	1	0.23	2.0	mg/Kg
Chromium	SW6010B	5/20/2004	0.218	1	0.20	46	mg/Kg
Cobalt	SW6010B	5/20/2004	0.182	1	0.16	8.8	mg/Kg
Copper	SW6010B	5/20/2004	0.242	1	0.22	34	mg/Kg
Lead	SW6010B	5/20/2004	0.369	1	0.33	190	mg/Kg
Mercury	SW7471A	5/21/2004	0.1	1	0.086	0.10	mg/Kg
Molybdenum	SW6010B	5/20/2004	0.245	1	0.22	ND	mg/Kg
Nickel	SW6010B	5/20/2004	0.199	1	0.18	64	mg/Kg
Selenium	SW6010B	5/20/2004	0.781	1	0.71	ND	mg/Kg
Silver	SW6010B	5/20/2004	0.287	1	0.26	ND	mg/Kg
Thallium	SW6010B	5/20/2004	2.666	1	2.4	ND	mg/Kg
Vanadium	SW6010B	5/20/2004	0.793	1	0.72	37	mg/Kg
Zinc	SW6010B	5/20/2004	2.073	1	1.9	94	mg/Kg

Certified Analytical Report of Nonhalogenated Volatiles

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-1-3.0 Lab Sample ID: 0405081-016A

Sample Location: Milpitas Library Date Prepared: 5/25/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Benzene	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Toluene	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Surr: Trifluorotoluene	SW8021B	5/27/2004	0	1	65-135	65.9	%REC

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-1-3.0 Lab Sample ID: 0405081-016A

Sample Location: Milpitas Library Date Prepared: 5/21/2004-5/26/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	2	1	2.00	ND	mg/Kg
TPH (Gasoline)	SW8015B	5/27/2004	0.1	1	0.100	ND	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	1	4.00	ND	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	1	50-150	116	%REC
Surr: Trifluorotoluene	SW8015B	5/27/2004	0	1	65-135	71.6	%REC

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-1-3.0 Lab Sample ID: 0405081-016A

Sample Location: Milpitas Library Date Prepared: 5/20/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Lead	SW6010B	5/20/2004	0.369	1	0.36	8.2	mg/Kg

Certified Analytical Report of Wet Chemistry

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Client Sample ID: EB-1-3.0 Lab Sample ID: 0405081-016A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Oil & Grease, Total	SM 5520 Mod.	5/21/2004	50	1	50	< 50	mg/Kg

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Client Sample ID: EB-8-1.5 Lab Sample ID: 0405081-017A

Sample Location: Milpitas Library Date Prepared: 5/21/2004-5/26/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	2	1	2.00	ND	mg/Kg
TPH (Gasoline)	SW8015B	5/27/2004	0.1	1	0.100	ND	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	1	4.00	ND	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	1	50-150	105	%REC
Surr: Trifluorotoluene	SW8015B	5/27/2004	0	1	65-135	79.1	%REC

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-8-1.5 Lab Sample ID: 0405081-017A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
	Michie	Anaryzeu		ractor			
1,1,1,2-Tetrachloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1,1-Trichloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1,2,2-Tetrachloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1,2-Trichloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1-Dichloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1-Dichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1-Dichloropropene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2,3-Trichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2,3-Trichloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2,4-Trichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2,4-Trimethylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dibromo-3-chloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dibromoethane (EDB)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dichloroethane (EDC)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dichloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,3,5-Trimethylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,3-Dichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,3-Dichloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,4-Dichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
2,2-Dichloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
2-Chloroethyl vinyl ether	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
2-Chlorotoluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
4-Chlorotoluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
4-Isopropyltoluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Benzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Bromobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Bromochloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Bromodichloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Bromoform	SW8260B	5/22/2004	10	1	10	ND	μg/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-8-1.5 Lab Sample ID: 0405081-017A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Carbon tetrachloride	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Chlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Chloroform	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Chloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
cis-1,2-Dichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Dibromochloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Dibromomethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Dichlorodifluoromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Ethyl tert-butyl ether (ETBE)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Freon-113	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Hexachlorobutadiene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Isopropyl ether (IPE)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Isopropylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Methyl tert-butyl ether (MTBE)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Methylene chloride	SW8260B	5/22/2004	50	1	50	ND	μg/Kg
Naphthalene	SW8260B	5/22/2004	20	1	20	ND	μg/Kg
n-Butylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
n-Propylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
sec-Butylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Styrene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
t-Butyl alcohol (t-Butanol)	SW8260B	5/22/2004	50	1	50	ND	μg/Kg
tert-Amyl methyl ether (TAME)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
tert-Butylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Tetrachloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Toluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
trans-1,2-Dichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
trans-1,3-Dichloropropene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Trichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Trichlorofluoromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Client Sample ID: EB-8-1.5 Lab Sample ID: 0405081-017A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Vinyl chloride	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Surr: 4-Bromofluorobenzene	SW8260B	5/22/2004	0	1	65-135	66.8	%REC
Surr: Dibromofluoromethane	SW8260B	5/22/2004	0	1	65-135	76.4	%REC
Surr: Toluene-d8	SW8260B	5/22/2004	0	1	65-135	94.3	%REC

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-8-1.5 Lab Sample ID: 0405081-017A

Sample Location: Milpitas Library Date Prepared: 5/20/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Arsenic	SW6010B	5/20/2004	1.747	1	1.6	ND	mg/Kg
Barium	SW6010B	5/20/2004	1.329	1	1.2	260	mg/Kg
Cadmium	SW6010B	5/20/2004	0.251	1	0.23	3.1	mg/Kg
Chromium	SW6010B	5/20/2004	0.218	1	0.20	59	mg/Kg
Lead	SW6010B	5/21/2004	0.369	1	0.34	8.5	mg/Kg
Mercury	SW7471A	5/21/2004	0.1	1	0.083	ND	mg/Kg
Selenium	SW6010B	5/20/2004	0.781	1	0.72	ND	mg/Kg
Silver	SW6010B	5/20/2004	0.287	1	0.26	ND	mg/Kg

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-8-3.0 Lab Sample ID: 0405081-018A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	2	1	2.00	ND	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	1	4.00	24.3	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	1	50-150	87.6	%REC

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-8-3.0 Lab Sample ID: 0405081-018A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Cadmium	SW6010B	5/24/2004	0.251	1	0.24	3.9	mg/Kg
Chromium	SW6010B	5/24/2004	0.218	1	0.21	45	mg/Kg
Lead	SW6010B	5/24/2004	0.369	1	0.35	16	mg/Kg
Nickel	SW6010B	5/24/2004	0.199	1	0.19	66	mg/Kg
Zinc	SW6010B	5/24/2004	2.073	1	2.0	55	mg/Kg

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-8-5.0 Lab Sample ID: 0405081-019A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Lead	SW6010B	5/24/2004	0.369	1	0.37	19	mg/Kg

Certified Analytical Report of Wet Chemistry

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Client Sample ID: EB-8-5.0 Lab Sample ID: 0405081-019A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Oil & Grease, Total	SM 5520 Mod.	5/21/2004	50	1	50	100	mg/Kg

Certified Analytical Report of Nonhalogenated Volatiles

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-5-1.5 Lab Sample ID: 0405081-020A

Sample Location: Milpitas Library Date Prepared: 5/25/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Benzene	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Toluene	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Surr: Trifluorotoluene	SW8021B	5/27/2004	0	1	65-135	82.0	%REC

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-5-1.5 Lab Sample ID: 0405081-020A

Sample Location: Milpitas Library Date Prepared: 5/21/2004-5/26/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	2	1	2.00	ND	mg/Kg
TPH (Gasoline)	SW8015B	5/27/2004	0.1	1	0.100	ND	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	1	4.00	22.8	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	1	50-150	107	%REC
Surr: Trifluorotoluene	SW8015B	5/27/2004	0	1	65-135	93.4	%REC

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-5-1.5 Lab Sample ID: 0405081-020A

Sample Location: Milpitas Library Date Prepared: 5/19/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis	Date	RL	Dilution	MRL	Result	Units
	Method	Analyzed		Factor			
1,2,4-Trichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,2-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,3-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,4-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4,5-Trichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4,6-Trichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dimethylphenol	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
2,4-Dinitrophenol	SW8270C	5/22/2004	1.7	1	1.7	ND	mg/Kg
2,4-Dinitrotoluene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,6-Dinitrotoluene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Chloronaphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Chlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Methylnaphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Nitrophenol	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
3,3'-Dichlorobenzidine	SW8270C	5/22/2004	1.7	1	1.7	ND	mg/Kg
3-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
3-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4,6-Dinitro-2-methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Bromophenyl phenyl ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chloro-3-methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chloroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chlorophenyl phenyl ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Nitrophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthylene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Acenaphiniyiene	3002/00	3/22/2004	0.33	ı	0.33	טאו	П

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Certified Analytical Report of SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

> Treadwell & Rollo Date Reported: 6/3/2004

EB-5-1.5 **Client Sample ID:**

5/14/2004

Date/Time Sampled

Lab Sample ID: 0405081-020A Milpitas Library **Date Prepared:** 5/19/2004 Sample Location:

SOIL Sample Matrix:

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Aniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benz(a)anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzidine	SW8270C	5/22/2004	3.3	1	3.3	ND	mg/Kg
Benzo(a)pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(b)fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(g,h,i)perylene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(k)fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzoic acid	SW8270C	5/22/2004	6.66	1	6.7	ND	mg/Kg
Benzyl alcohol	SW8270C	5/22/2004	6.66	1	6.7	ND	mg/Kg
Bis(2-chloroethoxy)methane	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroethyl)ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroisopropyl)ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-ethylhexyl)phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Butyl benzyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Chrysene	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
Dibenz(a,h)anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Dibenzofuran	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Diethyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Dimethyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Di-n-butyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Di-n-octyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Fluorene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobutadiene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorocyclopentadiene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachloroethane	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Indeno(1,2,3-cd)pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Isophorone	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

<u>Certified Analytical Report of</u> <u>SemiVolatile Organics By GC/MS</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Lab Sample ID: 0405081-020A

Date Prepared: 5/19/2004

Client Sample ID: EB-5-1.5

Sample Location: Milpitas Library

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Naphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Nitrobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodimethylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodi-n-propylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodiphenylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Pentachlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Phenanthrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Phenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Pyridine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Surr: 2,4,6-Tribromophenol	SW8270C	5/22/2004	0	1	19-122	39.0	%REC
Surr: 2-Fluorobiphenyl	SW8270C	5/22/2004	0	1	24-90	37.0	%REC
Surr: 2-Fluorophenol	SW8270C	5/22/2004	0	1	25-121	38.1	%REC
Surr: Nitrobenzene-d5	SW8270C	5/22/2004	0	1	17-96	30.6	%REC
Surr: Phenol-d6	SW8270C	5/22/2004	0	1	16-91	44.9	%REC
Surr: p-Terphenyl-d14	SW8270C	5/22/2004	0	1	49-138	45.8	%REC

Note: Surrogate recovery of p-Terphenyl-d14 falls outside control range due to possible matrix interference.

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-5-1.5 Lab Sample ID: 0405081-020A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Lead	SW6010B	5/24/2004	0.369	1	0.37	8.4	mg/Kg

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-5-3.0 Lab Sample ID: 0405081-021A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	2	1	2.00	ND	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	1	4.00	ND	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	1	50-150	98.9	%REC

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-5-3.0 Lab Sample ID: 0405081-021A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Cadmium	SW6010B	5/24/2004	0.251	1	0.24	2.2	mg/Kg
Chromium	SW6010B	5/24/2004	0.218	1	0.21	20	mg/Kg
Lead	SW6010B	5/24/2004	0.369	1	0.35	6.1	mg/Kg
Nickel	SW6010B	5/24/2004	0.199	1	0.19	20	mg/Kg
Zinc	SW6010B	5/24/2004	2.073	1	2.0	32	mg/Kg

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-5-5.0 Lab Sample ID: 0405081-022A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Lead	SW6010B	5/24/2004	0.369	1	0.34	7.0	mg/Kg

Certified Analytical Report of Wet Chemistry

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-5-5.0 Lab Sample ID: 0405081-022A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Oil & Grease Total	SM 5520 Mod	5/21/2004	50	1	50	< 50	ma/Ka

Certified Analytical Report of Nonhalogenated Volatiles

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-9-1.5 Lab Sample ID: 0405081-023A

Sample Location: Milpitas Library Date Prepared: 5/25/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Benzene	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Toluene	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Surr: Trifluorotoluene	SW8021B	5/27/2004	0	1	65-135	62.4	%REC

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-9-1.5 Lab Sample ID: 0405081-023A

Sample Location: Milpitas Library Date Prepared: 5/21/2004-5/26/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	2	10	20.0	ND	mg/Kg
TPH (Gasoline)	SW8015B	5/27/2004	0.1	1	0.100	ND	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	10	40.0	464	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	10	50-150	93.1	%REC
Surr: Trifluorotoluene	SW8015B	5/27/2004	0	1	65-135	71.3	%REC

Note: Reporting limits increased due to high level of heavy hydrocarbons.

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-9-1.5 Lab Sample ID: 0405081-023A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Lead	SW6010B	5/24/2004	0.369	1	0.35	26	mg/Kg

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-9-3.0 Lab Sample ID: 0405081-024A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	2	1	2.00	ND	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	1	4.00	ND	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	1	50-150	52.3	%REC

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Client Sample ID: EB-9-3.0 Lab Sample ID: 0405081-024A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
1,1,1,2-Tetrachloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1,1-Trichloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1,2,2-Tetrachloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1,2-Trichloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1-Dichloroethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1-Dichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,1-Dichloropropene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2,3-Trichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2,3-Trichloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2,4-Trichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2,4-Trimethylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dibromo-3-chloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dibromoethane (EDB)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dichloroethane (EDC)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,2-Dichloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,3,5-Trimethylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,3-Dichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,3-Dichloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
1,4-Dichlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
2,2-Dichloropropane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
2-Chloroethyl vinyl ether	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
2-Chlorotoluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
4-Chlorotoluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
4-Isopropyltoluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Benzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Bromobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Bromochloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Bromodichloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Bromoform	SW8260B	5/22/2004	10	1	10	ND	μg/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-9-3.0 Lab Sample ID: 0405081-024A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis	Date	RL	Dilution	MRL	Result	Units
	Method	Analyzed		Factor			
Carbon tetrachloride	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Chlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Chloroform	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Chloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
cis-1,2-Dichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Dibromochloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Dibromomethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Dichlorodifluoromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Ethyl tert-butyl ether (ETBE)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Freon-113	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Hexachlorobutadiene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Isopropyl ether (IPE)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Isopropylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Methyl tert-butyl ether (MTBE)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Methylene chloride	SW8260B	5/22/2004	50	1	50	ND	μg/Kg
Naphthalene	SW8260B	5/22/2004	20	1	20	ND	μg/Kg
n-Butylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
n-Propylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
sec-Butylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Styrene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
t-Butyl alcohol (t-Butanol)	SW8260B	5/22/2004	50	1	50	ND	μg/Kg
tert-Amyl methyl ether (TAME)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
tert-Butylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Tetrachloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Toluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
trans-1,2-Dichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
trans-1,3-Dichloropropene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Trichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Trichlorofluoromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-9-3.0 Lab Sample ID: 0405081-024A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Vinyl chloride	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Surr: 4-Bromofluorobenzene	SW8260B	5/22/2004	0	1	65-135	72.7	%REC
Surr: Dibromofluoromethane	SW8260B	5/22/2004	0	1	65-135	88.1	%REC
Surr: Toluene-d8	SW8260B	5/22/2004	0	1	65-135	98.1	%REC

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-9-3.0 Lab Sample ID: 0405081-024A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Cadmium	SW6010B	5/24/2004	0.251	1	0.23	4.4	mg/Kg
Chromium	SW6010B	5/24/2004	0.218	1	0.20	50	mg/Kg
Lead	SW6010B	5/24/2004	0.369	1	0.34	8.4	mg/Kg
Nickel	SW6010B	5/24/2004	0.199	1	0.18	74	mg/Kg
Zinc	SW6010B	5/24/2004	2.073	1	1.9	58	mg/Kg

Certified Analytical Report of SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

> Treadwell & Rollo **Date Reported:** 6/3/2004

Client Sample ID: EB-9-5.0

Lab Sample ID: 0405081-025A Milpitas lLibrary **Date Prepared:** 5/19/2004 Sample Location:

SOIL Sample Matrix: **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
	Method	Anaryzeu		ractor			
1,2,4-Trichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,2-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,3-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,4-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4,5-Trichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4,6-Trichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dimethylphenol	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
2,4-Dinitrophenol	SW8270C	5/22/2004	1.7	1	1.7	ND	mg/Kg
2,4-Dinitrotoluene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,6-Dinitrotoluene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Chloronaphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Chlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Methylnaphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Nitrophenol	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
3,3'-Dichlorobenzidine	SW8270C	5/22/2004	1.7	1	1.7	ND	mg/Kg
3-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
3-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4,6-Dinitro-2-methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Bromophenyl phenyl ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chloro-3-methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chloroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chlorophenyl phenyl ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Nitrophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthylene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Client Sample ID: EB-9-5.0 Lab Sample ID: 0405081-025A

Sample Location: Milpitas lLibrary Date Prepared: 5/19/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Aniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benz(a)anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzidine	SW8270C	5/22/2004	3.3	1	3.3	ND	mg/Kg
Benzo(a)pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(b)fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(g,h,i)perylene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(k)fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzoic acid	SW8270C	5/22/2004	6.66	1	6.7	ND	mg/Kg
Benzyl alcohol	SW8270C	5/22/2004	6.66	1	6.7	ND	mg/Kg
Bis(2-chloroethoxy)methane	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroethyl)ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroisopropyl)ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-ethylhexyl)phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Butyl benzyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Chrysene	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
Dibenz(a,h)anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Dibenzofuran	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Diethyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Dimethyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Di-n-butyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Di-n-octyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Fluorene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobutadiene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorocyclopentadiene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachloroethane	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Indeno(1,2,3-cd)pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Isophorone	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

<u>Certified Analytical Report of</u> <u>SemiVolatile Organics By GC/MS</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Lab Sample ID: 0405081-025A

Date Prepared: 5/19/2004

Client Sample ID: EB-9-5.0

Sample Location: Milpitas lLibrary

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units			
Naphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg			
Nitrobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg			
N-Nitrosodimethylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg			
N-Nitrosodi-n-propylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg			
N-Nitrosodiphenylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg			
Pentachlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg			
Phenanthrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg			
Phenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg			
Pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg			
Pyridine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg			
Surr: 2,4,6-Tribromophenol	SW8270C	5/22/2004	0	1	19-122	39.7	%REC			
Surr: 2-Fluorobiphenyl	SW8270C	5/22/2004	0	1	24-90	31.4	%REC			
Surr: 2-Fluorophenol	SW8270C	5/22/2004	0	1	25-121	39.4	%REC			
Surr: Nitrobenzene-d5	SW8270C	5/22/2004	0	1	17-96	30.6	%REC			
Surr: Phenol-d6	SW8270C	5/22/2004	0	1	16-91	45.4	%REC			
Surr: p-Terphenyl-d14	SW8270C	5/22/2004	0	1	49-138	55.8	%REC			

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-9-5.0 Lab Sample ID: 0405081-025A

Sample Location: Milpitas lLibrary Date Prepared: 5/22/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Lead	SW6010B	5/24/2004	0.369	1	0.34	6.8	mg/Kg

Certified Analytical Report of Wet Chemistry

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-9-5.0 Lab Sample ID: 0405081-025A

Sample Location: Milpitas lLibrary Date Prepared: 5/21/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Oil & Grease, Total	SM 5520 Mod.	5/21/2004	50	1	50	< 50	mg/Kg

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-4-1.5 Lab Sample ID: 0405081-026A

Sample Location: Milpitas Library Date Prepared: 5/21/2004-5/26/2004

Sample Matrix: SOIL
Date/Time Sampled 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	3	3	9.00	ND	mg/Kg
TPH (Gasoline)	SW8015B	5/27/2004	0.1	1	0.100	ND	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	3	12.0	119	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	3	50-150	98.6	%REC
Surr: Trifluorotoluene	SW8015B	5/27/2004	0	1	65-135	89.0	%REC

Note: Reporting limits increased due to high level of heavy hydrocarbons.

Certified Analytical Report of Purgeable Volatile Organics

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-4-1.5 Lab Sample ID: 0405081-026A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

1,1,1-Trichloroethane SW8260B 5/22/2004 10 1 10 ND µg 1,1,2,2-Tetrachloroethane SW8260B 5/22/2004 10 1 10 ND µg 1,1,2-Trichloroethane SW8260B 5/22/2004 10 1 10 ND µg 1,1-Dichloroethane SW8260B 5/22/2004 10 1 10 ND µg 1,2,3-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2,4-Trindethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromo-3-chloropropane SW8260B 5/22/2004 10 1 10	nits
1,1,1-Trichloroethane	
1,1,2,2-Tetrachloroethane SW8260B 5/22/2004 10 1 10 ND µg 1,1,2-Trichloroethane SW8260B 5/22/2004 10 1 10 ND µg 1,1-Dichloroethane SW8260B 5/22/2004 10 1 10 ND µg 1,1-Dichloroethene SW8260B 5/22/2004 10 1 10 ND µg 1,1-Dichloropropene SW8260B 5/22/2004 10 1 10 ND µg 1,2,3-Trichloropropene SW8260B 5/22/2004 10 1 10 ND µg 1,2,3-Trichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2,4-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromo-3-chloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromoethane (EDB) SW8260B 5/22/2004 10 1 10 <td>/Kg</td>	/Kg
1,1,2-Trichloroethane SW8260B 5/22/2004 10 1 10 ND µg 1,1-Dichloroethane SW8260B 5/22/2004 10 1 10 ND µg 1,1-Dichloroethane SW8260B 5/22/2004 10 1 10 ND µg 1,1-Dichloropropene SW8260B 5/22/2004 10 1 10 ND µg 1,2,3-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2,4-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2,4-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromo-3-chloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropenzene SW8260B 5/22/2004 10 1 10	/Kg
1,1-Dichloroethane SW8260B 5/22/2004 10 1 10 ND PD 1,1-Dichloroethene SW8260B 5/22/2004 10 1 10 ND PD 1,1-Dichloropropene SW8260B 5/22/2004 10 1 10 ND PD 1,2,3-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND PD 1,2,3-Trichloropropane SW8260B 5/22/2004 10 1 10 ND PD 1,2,4-Trinethylbenzene SW8260B 5/22/2004 10 1 10 ND PD 1,2,4-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND PD 1,2,4-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND PD 1,2-Dibromo-3-chloropropane SW8260B 5/22/2004 10 1 10 ND PD 1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10	/Kg
1,1-Dichloroethene SW8260B 5/22/2004 10 1 10 ND Pg 1,1-Dichloropropene SW8260B 5/22/2004 10 1 10 ND Pg 1,2,3-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND Pg 1,2,3-Trichloropropane SW8260B 5/22/2004 10 1 10 ND Pg 1,2,4-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND Pg 1,2,4-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND Pg 1,2-Dibromoe-3-chloropropane SW8260B 5/22/2004 10 1 10 ND Pg 1,2-Dibromoethane (EDB) SW8260B 5/22/2004 10 1 10 ND Pg 1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND Pg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10	/Kg
1,1-Dichloropropene SW8260B 5/22/2004 10 1 10 ND 10 1,2,3-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND 10 1,2,3-Trichloropropane SW8260B 5/22/2004 10 1 10 ND 10 1,2,4-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND 10 1,2,4-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND 10 1,2-Dibromo-3-chloropropane SW8260B 5/22/2004 10 1 10 ND 10 1,2-Dibromoethane (EDB) SW8260B 5/22/2004 10 1 10 ND 10 1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND 10 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND 10 1,3-Trimethylbenzene SW8260B 5/22/2004 10 1 10	/Kg
1,2,3-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2,3-Trichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2,4-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2,4-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromo-3-chloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromoethane (EDB) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3,5-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 <td>/Kg</td>	/Kg
1,2,3-Trichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2,4-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2,4-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromo-3-chloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromoethane (EDB) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10	/Kg
1,2,4-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2,4-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromo-3-chloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromoethane (EDB) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3,5-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg	/Kg
1,2,4-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromo-3-chloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromoethane (EDB) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropethane (EDC) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2-Chloroethyl vinyl ether SW8260B 5/22/2004	/Kg
1,2-Dibromo-3-chloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromoethane (EDB) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloroethane (EDC) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3,5-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg	/Kg
1,2-Dibromoethane (EDB) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloroethane (EDC) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3,5-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3,5-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg	/Kg
1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloroethane (EDC) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg	/Kg
1,2-Dichloroethane (EDC) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3,5-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg	/Kg
1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3,5-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg	/Kg
1,3,5-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND μg 1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND μg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND μg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND μg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND μg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND μg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND μg	/Kg
1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene	/Kg
1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND μg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND μg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND μg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND μg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND μg	/Kg
1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND μg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND μg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND μg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND μg	/Kg
1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND μg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND μg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND μg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND μg	/Kg
2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND μg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND μg	/Kg
2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND μ g 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND μ g	/Kg
	/Kg
4-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND μg	/Kg
	/Kg
4-Isopropyltoluene SW8260B 5/22/2004 10 1 10 ND µg	/Kg
	/Kg
· ·	/Kg
· ·	/Kg
	/Kg
•	/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Certified Analytical Report of Purgeable Volatile Organics

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-4-1.5 Lab Sample ID: 0405081-026A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Carbon tetrachloride	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Chlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Chloroform	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Chloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
cis-1,2-Dichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Dibromochloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Dibromomethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Dichlorodifluoromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Ethyl tert-butyl ether (ETBE)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Freon-113	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Hexachlorobutadiene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Isopropyl ether (IPE)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Isopropylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Methyl tert-butyl ether (MTBE)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Methylene chloride	SW8260B	5/22/2004	50	1	50	ND	μg/Kg
Naphthalene	SW8260B	5/22/2004	20	1	20	ND	μg/Kg
n-Butylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
n-Propylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
sec-Butylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Styrene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
t-Butyl alcohol (t-Butanol)	SW8260B	5/22/2004	50	1	50	ND	μg/Kg
tert-Amyl methyl ether (TAME)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
tert-Butylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Tetrachloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Toluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
trans-1,2-Dichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
trans-1,3-Dichloropropene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Trichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Trichlorofluoromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Certified Analytical Report of Purgeable Volatile Organics

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-4-1.5 Lab Sample ID: 0405081-026A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Vinyl chloride	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Surr: 4-Bromofluorobenzene	SW8260B	5/22/2004	0	1	65-135	68.5	%REC
Surr: Dibromofluoromethane	SW8260B	5/22/2004	0	1	65-135	75.9	%REC
Surr: Toluene-d8	SW8260B	5/22/2004	0	1	65-135	93.8	%REC

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-4-1.5 Lab Sample ID: 0405081-026A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Cadmium	SW6010B	5/24/2004	0.251	1	0.24	3.9	mg/Kg
Chromium	SW6010B	5/24/2004	0.218	1	0.21	55	mg/Kg
Lead	SW6010B	5/24/2004	0.369	1	0.35	99	mg/Kg
Nickel	SW6010B	5/24/2004	0.199	1	0.19	56	mg/Kg
Zinc	SW6010B	5/24/2004	2.073	1	2.0	120	mg/Kg

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Client Sample ID: EB-4-3.0 Lab Sample ID: 0405081-027A

Sample Location: Milpitas lLibrary Date Prepared: 5/21/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	2	1	2.00	ND	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	1	4.00	ND	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	1	50-150	90.7	%REC

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-4-3.0 Lab Sample ID: 0405081-027A

Sample Location: Milpitas lLibrary Date Prepared: 5/19/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis	Date	RL	Dilution	MRL	Result	Units
	Method	Analyzed		Factor			
1,2,4-Trichlorobenzene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
1,2-Dichlorobenzene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
1,3-Dichlorobenzene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
1,4-Dichlorobenzene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2,4,5-Trichlorophenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2,4,6-Trichlorophenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2,4-Dichlorophenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2,4-Dimethylphenol	SW8270C	5/23/2004	0.66	10	6.6	ND	mg/Kg
2,4-Dinitrophenol	SW8270C	5/23/2004	1.7	10	17	ND	mg/Kg
2,4-Dinitrotoluene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2,6-Dinitrotoluene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2-Chloronaphthalene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2-Chlorophenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2-Methylnaphthalene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2-Methylphenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2-Nitroaniline	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
2-Nitrophenol	SW8270C	5/23/2004	0.66	10	6.6	ND	mg/Kg
3,3´-Dichlorobenzidine	SW8270C	5/23/2004	1.7	10	17	ND	mg/Kg
3-Methylphenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
3-Nitroaniline	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4,6-Dinitro-2-methylphenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4-Bromophenyl phenyl ether	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4-Chloro-3-methylphenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4-Chloroaniline	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4-Chlorophenyl phenyl ether	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4-Methylphenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4-Nitroaniline	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
4-Nitrophenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Acenaphthene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Acenaphthylene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
•							

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-4-3.0 Lab Sample ID: 0405081-027A

Sample Location: Milpitas lLibrary Date Prepared: 5/19/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
	Witthou	Anaryzeu		ractor			
Aniline	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Anthracene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Benz(a)anthracene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Benzidine	SW8270C	5/23/2004	3.3	10	33	ND	mg/Kg
Benzo(a)pyrene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Benzo(b)fluoranthene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Benzo(g,h,i)perylene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Benzo(k)fluoranthene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Benzoic acid	SW8270C	5/23/2004	6.66	10	67	ND	mg/Kg
Benzyl alcohol	SW8270C	5/23/2004	6.66	10	67	ND	mg/Kg
Bis(2-chloroethoxy)methane	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Bis(2-chloroethyl)ether	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Bis(2-chloroisopropyl)ether	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Bis(2-ethylhexyl)phthalate	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Butyl benzyl phthalate	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Chrysene	SW8270C	5/23/2004	0.66	10	6.6	ND	mg/Kg
Dibenz(a,h)anthracene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Dibenzofuran	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Diethyl phthalate	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Dimethyl phthalate	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Di-n-butyl phthalate	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Di-n-octyl phthalate	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Fluoranthene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Fluorene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Hexachlorobenzene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Hexachlorobutadiene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Hexachlorocyclopentadiene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Hexachloroethane	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Indeno(1,2,3-cd)pyrene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Isophorone	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Certified Analytical Report of SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

> Treadwell & Rollo Date Reported: 6/3/2004

EB-4-3.0 **Client Sample ID:**

Lab Sample ID: 0405081-027A Milpitas lLibrary **Date Prepared:** 5/19/2004 Sample Location:

SOIL Sample Matrix: **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Naphthalene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Nitrobenzene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
N-Nitrosodimethylamine	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
N-Nitrosodi-n-propylamine	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
N-Nitrosodiphenylamine	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Pentachlorophenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Phenanthrene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Phenol	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Pyrene	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Pyridine	SW8270C	5/23/2004	0.33	10	3.3	ND	mg/Kg
Surr: 2,4,6-Tribromophenol	SW8270C	5/23/2004	0	10	19-122	41.7	%REC
Surr: 2-Fluorobiphenyl	SW8270C	5/23/2004	0	10	24-90	49.9	%REC
Surr: 2-Fluorophenol	SW8270C	5/23/2004	0	10	25-121	55.0	%REC
Surr: Nitrobenzene-d5	SW8270C	5/23/2004	0	10	17-96	45.8	%REC
Surr: Phenol-d6	SW8270C	5/23/2004	0	10	16-91	66.9	%REC
Surr: p-Terphenyl-d14	SW8270C	5/23/2004	0	10	49-138	63.1	%REC

Note: Reporting limits increased due to high level of heavy hydrocarbons.

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-4-3.0 Lab Sample ID: 0405081-027A

Sample Location: Milpitas lLibrary Date Prepared: 5/22/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Lead	SW6010B	5/24/2004	0.369	1	0.35	14	mg/Kg

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-4-5.0 Lab Sample ID: 0405081-028A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Lead	SW6010B	5/24/2004	0.369	1	0.36	7.7	mg/Kg

Certified Analytical Report of Wet Chemistry

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

> Treadwell & Rollo Date Reported: 6/3/2004

EB-4-5.0 **Client Sample ID: Lab Sample ID:** 0405081-028A

Milpitas Library **Date Prepared:** 5/21/2004 Sample Location:

SOIL Sample Matrix: **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Oil & Grease Total	SM 5520 Mod	5/21/2004	50	1	50	< 50	ma/Ka

Certified Analytical Report of Nonhalogenated Volatiles

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-13-1.5 Lab Sample ID: 0405081-029A

Sample Location: Milpitas Library Date Prepared: 5/25/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Benzene	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Toluene	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Surr: Trifluorotoluene	SW8021B	5/27/2004	0	1	65-135	86.3	%REC

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Lab Sample ID: 0405081-029A

Client Sample ID: EB-13-1.5

Sample Location: Milpitas Library Date Prepared: 5/21/2004-5/26/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	2	1	2.00	ND	mg/Kg
TPH (Gasoline)	SW8015B	5/27/2004	0.1	1	0.100	ND	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	1	4.00	ND	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	1	50-150	96.0	%REC
Surr: Trifluorotoluene	SW8015B	5/27/2004	0	1	65-135	97.2	%REC

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-13-1.5 Lab Sample ID: 0405081-029A

Sample Location: Milpitas Library Date Prepared: 5/21/2004-5/22/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Antimony	SW6010B	5/24/2004	1.419	1	1.3	ND	mg/Kg
Arsenic	SW6010B	5/24/2004	1.747	1	1.7	ND	mg/Kg
Barium	SW6010B	5/24/2004	1.329	1	1.3	200	mg/Kg
Beryllium	SW6010B	5/24/2004	0.84	1	0.80	ND	mg/Kg
Cadmium	SW6010B	5/24/2004	0.251	1	0.24	3.8	mg/Kg
Chromium	SW6010B	5/24/2004	0.218	1	0.21	56	mg/Kg
Cobalt	SW6010B	5/24/2004	0.182	1	0.17	12	mg/Kg
Copper	SW6010B	5/24/2004	0.242	1	0.23	32	mg/Kg
Lead	SW6010B	5/24/2004	0.369	1	0.35	11	mg/Kg
Mercury	SW7471A	5/24/2004	0.1	1	0.095	ND	mg/Kg
Molybdenum	SW6010B	5/24/2004	0.245	1	0.23	ND	mg/Kg
Nickel	SW6010B	5/24/2004	0.199	1	0.19	78	mg/Kg
Selenium	SW6010B	5/24/2004	0.781	1	0.74	ND	mg/Kg
Silver	SW6010B	5/24/2004	0.287	1	0.27	ND	mg/Kg
Thallium	SW6010B	5/24/2004	2.666	1	2.5	ND	mg/Kg
Vanadium	SW6010B	5/24/2004	0.793	1	0.75	60	mg/Kg
Zinc	SW6010B	5/24/2004	2.073	1	2.0	61	mg/Kg

Certified Analytical Report of Wet Chemistry

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-13-1.5 Lab Sample ID: 0405081-029A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Oil & Grease Total	SM 5520 Mod	5/21/2004	50	1	50	< 50	ma/Ka

Certified Analytical Report of Nonhalogenated Volatiles

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Client Sample ID: EB-13-3.0 Lab Sample ID: 0405081-030A

Sample Location: Milpitas Library Date Prepared: 5/25/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Benzene	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Toluene	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Surr: Trifluorotoluene	SW8021B	5/27/2004	0	1	65-135	84.8	%REC

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-13-3.0 Lab Sample ID: 0405081-030A

Sample Location: Milpitas Library Date Prepared: 5/26/2004
Sample Matrix: SOIL

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Gasoline)	SW8015B	5/27/2004	0.1	1	0.100	ND	mg/Kg
Surr: Trifluorotoluene	SW8015B	5/27/2004	0	1	65-135	95.8	%REC

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-13-3.0 Lab Sample ID: 0405081-030A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Cadmium	SW6010B	5/24/2004	0.251	1	0.25	3.8	mg/Kg
Chromium	SW6010B	5/24/2004	0.218	1	0.21	49	mg/Kg
Lead	SW6010B	5/24/2004	0.369	1	0.36	7.3	mg/Kg
Nickel	SW6010B	5/24/2004	0.199	1	0.20	68	mg/Kg
Zinc	SW6010B	5/24/2004	2.073	1	2.0	53	mg/Kg

Certified Analytical Report of Wet Chemistry

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-13-3.0 Lab Sample ID: 0405081-030A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Oil & Grease, Total	SM 5520 Mod.	5/21/2004	50	1	50	< 50	mg/Kg

Certified Analytical Report of Nonhalogenated Volatiles

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-11-1.5 Lab Sample ID: 0405081-032A

Sample Location: Milpitas Library Date Prepared: 5/27/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Benzene	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Toluene	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8021B	5/27/2004	10	1	10	ND	μg/Kg
Surr: Trifluorotoluene	SW8021B	5/27/2004	0	1	65-135	88.7	%REC

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-11-1.5 Lab Sample ID: 0405081-032A

Sample Location: Milpitas Library Date Prepared: 5/27/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Gasoline)	SW8015B	5/27/2004	0.1	1	0.100	ND	mg/Kg
Surr: Trifluorotoluene	SW8015B	5/27/2004	0	1	65-135	99.1	%REC

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-11-1.5 Lab Sample ID: 0405081-032A

Sample Location: Milpitas Library Date Prepared: 5/19/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
1,2,4-Trichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,2-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,3-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,4-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4,5-Trichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4,6-Trichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dimethylphenol	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
2,4-Dinitrophenol	SW8270C	5/22/2004	1.7	1	1.7	ND	mg/Kg
2,4-Dinitrotoluene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,6-Dinitrotoluene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Chloronaphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Chlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Methylnaphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Nitrophenol	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
3,3´-Dichlorobenzidine	SW8270C	5/22/2004	1.7	1	1.7	ND	mg/Kg
3-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
3-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4,6-Dinitro-2-methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Bromophenyl phenyl ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chloro-3-methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chloroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chlorophenyl phenyl ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Nitrophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthylene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-11-1.5 Lab Sample ID: 0405081-032A

Sample Location: Milpitas Library Date Prepared: 5/19/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Aniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benz(a)anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzidine	SW8270C	5/22/2004	3.3	1	3.3	ND	mg/Kg
Benzo(a)pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(b)fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(g,h,i)perylene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(k)fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzoic acid	SW8270C	5/22/2004	6.66	1	6.7	ND	mg/Kg
Benzyl alcohol	SW8270C	5/22/2004	6.66	1	6.7	ND	mg/Kg
Bis(2-chloroethoxy)methane	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroethyl)ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroisopropyl)ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-ethylhexyl)phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Butyl benzyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Chrysene	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
Dibenz(a,h)anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Dibenzofuran	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Diethyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Dimethyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Di-n-butyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Di-n-octyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Fluorene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobutadiene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorocyclopentadiene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachloroethane	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Indeno(1,2,3-cd)pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Isophorone	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

<u>Certified Analytical Report of</u> <u>SemiVolatile Organics By GC/MS</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Client Sample ID: EB-11-1.5 Lab Sample ID: 0405081-032A

Sample Location: Milpitas Library Date Prepared: 5/19/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Naphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Nitrobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodimethylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodi-n-propylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodiphenylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Pentachlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Phenanthrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Phenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Pyridine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Surr: 2,4,6-Tribromophenol	SW8270C	5/22/2004	0	1	19-122	34.1	%REC
Surr: 2-Fluorobiphenyl	SW8270C	5/22/2004	0	1	24-90	26.9	%REC
Surr: 2-Fluorophenol	SW8270C	5/22/2004	0	1	25-121	33.0	%REC
Surr: Nitrobenzene-d5	SW8270C	5/22/2004	0	1	17-96	28.4	%REC
Surr: Phenol-d6	SW8270C	5/22/2004	0	1	16-91	41.3	%REC
Surr: p-Terphenyl-d14	SW8270C	5/22/2004	0	1	49-138	49.9	%REC

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-11-1.5 Lab Sample ID: 0405081-032A

Sample Location: Milpitas Library Date Prepared: 5/21/2004-5/22/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Arsenic	SW6010B	5/24/2004	1.747	1	1.7	ND	mg/Kg
Barium	SW6010B	5/24/2004	1.329	1	1.3	130	mg/Kg
Cadmium	SW6010B	5/24/2004	0.251	1	0.24	2.8	mg/Kg
Chromium	SW6010B	5/24/2004	0.218	1	0.21	58	mg/Kg
Lead	SW6010B	5/24/2004	0.369	1	0.36	40	mg/Kg
Mercury	SW7471A	5/24/2004	0.1	1	0.086	ND	mg/Kg
Selenium	SW6010B	5/24/2004	0.781	1	0.76	ND	mg/Kg
Silver	SW6010B	5/24/2004	0.287	1	0.28	ND	mg/Kg

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Client Sample ID: EB-11-3.0 Lab Sample ID: 0405081-033A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	2	1	2.00	ND	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	1	4.00	ND	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	1	50-150	96.4	%REC

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-11-3.0 Lab Sample ID: 0405081-033A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Lead	SW6010B	5/24/2004	0.369	1	0.35	7.2	mg/Kg

Certified Analytical Report of Wet Chemistry

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

> Treadwell & Rollo Date Reported: 6/3/2004

EB-11-3.0 **Client Sample ID: Lab Sample ID:** 0405081-033A

Milpitas Library **Date Prepared:** 5/21/2004 Sample Location:

SOIL Sample Matrix: **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Oil & Grease Total	SM 5520 Mod	5/21/2004	50	1	50	< 50	ma/Ka

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-12-1.5 Lab Sample ID: 0405081-035A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	5	3	15.0	ND	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	3	12.0	246	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	3	50-150	132	%REC

Note: Reporting limits increased due to high level of heavy hydrocarbons.

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-12-1.5 Lab Sample ID: 0405081-035A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Cadmium	SW6010B	5/24/2004	0.251	1	0.24	3.4	mg/Kg
Chromium	SW6010B	5/24/2004	0.218	1	0.21	35	mg/Kg
Lead	SW6010B	5/24/2004	0.369	1	0.35	340	mg/Kg
Nickel	SW6010B	5/24/2004	0.199	1	0.19	52	mg/Kg
Zinc	SW6010B	5/24/2004	2.073	1	2.0	230	mg/Kg

Certified Analytical Report of Wet Chemistry

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-12-1.5 Lab Sample ID: 0405081-035A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Sample Matrix: SOIL

Date/Time Sampled 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Oil & Grease Total	SM 5520 Mod	5/21/2004	50	1	50	50	ma/Ka

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-12-3.0 Lab Sample ID: 0405081-036A

Sample Location: Milpitas Library Date Prepared: 5/21/2004-5/27/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	2	1	2.00	ND	mg/Kg
TPH (Gasoline)	SW8015B	5/27/2004	0.1	1	0.100	ND	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	1	4.00	7.98	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	1	50-150	113	%REC
Surr: Trifluorotoluene	SW8015B	5/27/2004	0	1	65-135	97.7	%REC

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-12-3.0 Lab Sample ID: 0405081-036A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

1,1,1-Trichloroethane SW8260B 5/22/2004 10 1 10 ND µg 1,1,2,2-Tetrachloroethane SW8260B 5/22/2004 10 1 10 ND µg 1,1,2-Trichloroethane SW8260B 5/22/2004 10 1 10 ND µg 1,1-Dichloroethane SW8260B 5/22/2004 10 1 10 ND µg 1,2,3-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2,4-Trindethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromo-3-chloropropane SW8260B 5/22/2004 10 1 10	nits
1,1,1-Trichloroethane	
1,1,2,2-Tetrachloroethane SW8260B 5/22/2004 10 1 10 ND µg 1,1,2-Trichloroethane SW8260B 5/22/2004 10 1 10 ND µg 1,1-Dichloroethane SW8260B 5/22/2004 10 1 10 ND µg 1,1-Dichloroethene SW8260B 5/22/2004 10 1 10 ND µg 1,1-Dichloropropene SW8260B 5/22/2004 10 1 10 ND µg 1,2,3-Trichloropropene SW8260B 5/22/2004 10 1 10 ND µg 1,2,3-Trichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2,4-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromo-3-chloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromoethane (EDB) SW8260B 5/22/2004 10 1 10 <td>/Kg</td>	/Kg
1,1,2-Trichloroethane SW8260B 5/22/2004 10 1 10 ND µg 1,1-Dichloroethane SW8260B 5/22/2004 10 1 10 ND µg 1,1-Dichloroethane SW8260B 5/22/2004 10 1 10 ND µg 1,1-Dichloropropene SW8260B 5/22/2004 10 1 10 ND µg 1,2,3-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2,4-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2,4-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromo-3-chloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropenzene SW8260B 5/22/2004 10 1 10	/Kg
1,1-Dichloroethane SW8260B 5/22/2004 10 1 10 ND PD 1,1-Dichloroethene SW8260B 5/22/2004 10 1 10 ND PD 1,1-Dichloropropene SW8260B 5/22/2004 10 1 10 ND PD 1,2,3-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND PD 1,2,3-Trichloropropane SW8260B 5/22/2004 10 1 10 ND PD 1,2,4-Trinethylbenzene SW8260B 5/22/2004 10 1 10 ND PD 1,2,4-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND PD 1,2,4-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND PD 1,2-Dibromo-3-chloropropane SW8260B 5/22/2004 10 1 10 ND PD 1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10	/Kg
1,1-Dichloroethene SW8260B 5/22/2004 10 1 10 ND Pg 1,1-Dichloropropene SW8260B 5/22/2004 10 1 10 ND Pg 1,2,3-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND Pg 1,2,3-Trichloropropane SW8260B 5/22/2004 10 1 10 ND Pg 1,2,4-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND Pg 1,2,4-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND Pg 1,2-Dibromoe-3-chloropropane SW8260B 5/22/2004 10 1 10 ND Pg 1,2-Dibromoethane (EDB) SW8260B 5/22/2004 10 1 10 ND Pg 1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND Pg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10	/Kg
1,1-Dichloropropene SW8260B 5/22/2004 10 1 10 ND 10 1 <td< td=""><td>/Kg</td></td<>	/Kg
1,2,3-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2,3-Trichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2,4-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2,4-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromo-3-chloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromoethane (EDB) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3,5-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 <td>/Kg</td>	/Kg
1,2,3-Trichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2,4-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2,4-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromo-3-chloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromoethane (EDB) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10	/Kg
1,2,4-Trichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2,4-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromo-3-chloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromoethane (EDB) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3,5-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg	/Kg
1,2,4-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromo-3-chloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromoethane (EDB) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropethane (EDC) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2-Chloroethyl vinyl ether SW8260B 5/22/2004	/Kg
1,2-Dibromo-3-chloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dibromoethane (EDB) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloroethane (EDC) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3,5-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg	/Kg
1,2-Dibromoethane (EDB) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloroethane (EDC) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3,5-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3,5-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg	/Kg
1,2-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloroethane (EDC) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg	/Kg
1,2-Dichloroethane (EDC) SW8260B 5/22/2004 10 1 10 ND µg 1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3,5-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg	/Kg
1,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,3,5-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg	/Kg
1,3,5-Trimethylbenzene SW8260B 5/22/2004 10 1 10 ND μg 1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND μg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND μg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND μg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND μg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND μg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND μg	/Kg
1,3-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND µg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND µg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND µg 2-Chlorotoluene	/Kg
1,3-Dichloropropane SW8260B 5/22/2004 10 1 10 ND μg 1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND μg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND μg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND μg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND μg	/Kg
1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND μg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND μg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND μg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND μg	/Kg
1,4-Dichlorobenzene SW8260B 5/22/2004 10 1 10 ND μg 2,2-Dichloropropane SW8260B 5/22/2004 10 1 10 ND μg 2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND μg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND μg	/Kg
2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND μg 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND μg	/Kg
2-Chloroethyl vinyl ether SW8260B 5/22/2004 10 1 10 ND μ g 2-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND μ g	/Kg
	/Kg
4-Chlorotoluene SW8260B 5/22/2004 10 1 10 ND μg	/Kg
	/Kg
4-Isopropyltoluene SW8260B 5/22/2004 10 1 10 ND µg	/Kg
	/Kg
· ·	/Kg
· ·	/Kg
	/Kg
•	/Kg

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Client Sample ID: EB-12-3.0 Lab Sample ID: 0405081-036A Sample Location: Milpitas Library Date Prepared: 5/22/2004

Sample Location: Milpitas Library Date Policy
Sample Matrix: SOIL
Date/Time Sampled 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Carbon tetrachloride	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Chlorobenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Chloroform	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Chloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
cis-1,2-Dichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Dibromochloromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Dibromomethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Dichlorodifluoromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Ethyl tert-butyl ether (ETBE)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Freon-113	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Hexachlorobutadiene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Isopropyl ether (IPE)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Isopropylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Methyl tert-butyl ether (MTBE)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Methylene chloride	SW8260B	5/22/2004	50	1	50	ND	μg/Kg
Naphthalene	SW8260B	5/22/2004	20	1	20	ND	μg/Kg
n-Butylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
n-Propylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
sec-Butylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Styrene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
t-Butyl alcohol (t-Butanol)	SW8260B	5/22/2004	50	1	50	ND	μg/Kg
tert-Amyl methyl ether (TAME)	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
tert-Butylbenzene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Tetrachloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Toluene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
trans-1,2-Dichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
trans-1,3-Dichloropropene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Trichloroethene	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Trichlorofluoromethane	SW8260B	5/22/2004	10	1	10	ND	μg/Kg

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-12-3.0 Lab Sample ID: 0405081-036A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Vinyl chloride	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8260B	5/22/2004	10	1	10	ND	μg/Kg
Surr: 4-Bromofluorobenzene	SW8260B	5/22/2004	0	1	65-135	68.9	%REC
Surr: Dibromofluoromethane	SW8260B	5/22/2004	0	1	65-135	65.5	%REC
Surr: Toluene-d8	SW8260B	5/22/2004	0	1	65-135	71.5	%REC

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-12-3.0 Lab Sample ID: 0405081-036A

Sample Location: Milpitas Library Date Prepared: 5/22/2004

Sample Matrix: SOIL

Date/Time Sampled 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Lead	SW6010B	5/24/2004	0.369	1	0.34	9.1	mg/Kg

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-6 Lab Sample ID: 0405081-038A

Sample Location: Milpitas Library Date Prepared: 5/20/2004

Sample Matrix: WATER **Date/Time Sampled** 5/17/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/21/2004	0.3	1	0.300	ND	mg/L
TPH (Gasoline)	SW8015B	5/20/2004	0.1	1	0.100	ND	mg/L
TPH (Oil)	SW8015B	5/21/2004	0.4	1	0.400	ND	mg/L
Surr: Pentacosane	SW8015B	5/21/2004	0	1	50-150	82.6	%REC
Surr: Trifluorotoluene	SW8015B	5/20/2004	0	1	65-135	89.0	%REC

Note: Diesel reporting limit increased due to presence of unknown hydrocarbons in the diesel range.

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-6 Lab Sample ID: 0405081-038A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Sample Matrix: WATER **Date/Time Sampled** 5/17/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
1,1,1,2-Tetrachloroethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,1,1-Trichloroethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,1,2,2-Tetrachloroethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,1,2-Trichloroethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,1-Dichloroethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,1-Dichloroethene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,1-Dichloropropene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,2,3-Trichlorobenzene	SW8260B	5/21/2004	2	1	2.0	ND	μg/L
1,2,3-Trichloropropane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,2,4-Trichlorobenzene	SW8260B	5/21/2004	2	1	2.0	ND	μg/L
1,2,4-Trimethylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,2-Dibromo-3-chloropropane	SW8260B	5/21/2004	2	1	2.0	ND	μg/L
1,2-Dibromoethane (EDB)	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,2-Dichlorobenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,2-Dichloroethane (EDC)	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,2-Dichloropropane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,3,5-Trimethylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,3-Dichlorobenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,3-Dichloropropane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,4-Dichlorobenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
2,2-Dichloropropane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
2-Chloroethyl vinyl ether	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
2-Chlorotoluene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
4-Chlorotoluene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
4-Isopropyltoluene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Benzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Bromobenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Bromochloromethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Bromodichloromethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Bromoform	SW8260B	5/21/2004	2	1	2.0	ND	μg/L

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-6 Lab Sample ID: 0405081-038A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Sample Matrix: WATER **Date/Time Sampled** 5/17/2004

Parameters	Analysis	Date	RL	Dilution	MRL	Result	Units
	Method	Analyzed		Factor			
Bromomethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Carbon tetrachloride	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Chlorobenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Chloroform	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Chloromethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
cis-1,2-Dichloroethene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Dibromochloromethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Dibromomethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Dichlorodifluoromethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Ethyl tert-butyl ether (ETBE)	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Ethylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Freon-113	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Hexachlorobutadiene	SW8260B	5/21/2004	2	1	2.0	ND	μg/L
Isopropyl ether (IPE)	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Isopropylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Methyl tert-butyl ether (MTBE)	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Methylene chloride	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Naphthalene	SW8260B	5/21/2004	2	1	2.0	ND	μg/L
n-Butylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
n-Propylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
sec-Butylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Styrene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
t-Butyl alcohol (t-Butanol)	SW8260B	5/21/2004	29.76	1	30	ND	μg/L
tert-Amyl methyl ether (TAME)	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
tert-Butylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Tetrachloroethene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Toluene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
trans-1,2-Dichloroethene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
trans-1,3-Dichloropropene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Trichloroethene	SW8260B	5/21/2004	2	1	2.0	ND	μg/L

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-6 Lab Sample ID: 0405081-038A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Sample Matrix: WATER

Date/Time Sampled 5/17/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Trichlorofluoromethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Vinyl chloride	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Xylenes, Total	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Surr: 4-Bromofluorobenzene	SW8260B	5/21/2004	0	1	75-125	78.0	%REC
Surr: Dibromofluoromethane	SW8260B	5/21/2004	0	1	75-125	92.4	%REC
Surr: Toluene-d8	SW8260B	5/21/2004	0	1	75-125	62.3	%REC

Note: Surrogate outside the control limit due to possible matrix interference.

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-6 Lab Sample ID: 0405081-038A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Sample Matrix: WATER **Date/Time Sampled** 5/17/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Cadmium	E200.7	5/22/2004	0.01	1	0.010	0.013	mg/L
Chromium	E200.7	5/22/2004	0.01	1	0.010	0.20	mg/L
Lead	E200.7	5/22/2004	0.05	1	0.050	0.056	mg/L
Nickel	E200.7	5/22/2004	0.03	1	0.030	0.36	mg/L
Zinc	E200.7	5/22/2004	0.03	1	0.030	0.31	mg/L

Certified Analytical Report of Nonhalogenated Volatiles

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-10 Lab Sample ID: 0405081-039A

Sample Location: Milpitas Library Date Prepared: 6/1/2004

Sample Matrix: WATER **Date/Time Sampled** 5/17/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Benzene	SW8021B	6/2/2004	1	1	1.0	2.1	μg/L
Ethylbenzene	SW8021B	6/2/2004	1	1	1.0	2.9	μg/L
Toluene	SW8021B	6/2/2004	1	1	1.0	13	μg/L
Xylenes, Total	SW8021B	6/2/2004	1	1	1.0	13	μg/L
Surr: Trifluorotoluene	SW8021B	6/2/2004	0	1	65-135	74.5	%REC

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-10 Lab Sample ID: 0405081-039A

Sample Location: Milpitas Library Date Prepared: 5/20/2004-6/1/2004

Sample Matrix: WATER

Date/Time Sampled 5/17/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/21/2004	0.1	1	0.100	ND	mg/L
TPH (Gasoline)	SW8015B	6/2/2004	0.1	1	0.100	0.228	mg/L
TPH (Gasoline)	SW8015B	5/20/2004	0.1	1	0.100	ND	mg/L
TPH (Oil)	SW8015B	5/21/2004	0.4	1	0.400	ND	mg/L
Surr: Pentacosane	SW8015B	5/21/2004	0	1	50-150	95.1	%REC
Surr: Trifluorotoluene	SW8015B	6/2/2004	0	1	65-135	98.2	%REC
Surr: Trifluorotoluene	SW8015B	5/20/2004	0	1	65-135	88.8	%REC

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-10 Lab Sample ID: 0405081-039A

Sample Location: Milpitas Library Date Prepared: 5/20/2004-5/21/2004

Sample Matrix: WATER

Date/Time Sampled 5/17/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Antimony	E200.7	5/22/2004	0.01	1	0.010	ND	mg/L
Arsenic	E200.7	5/22/2004	0.04	1	0.040	ND	mg/L
Barium	E200.7	5/22/2004	0.02	1	0.020	0.099	mg/L
Beryllium	E200.7	5/22/2004	0.01	1	0.010	ND	mg/L
Cadmium	E200.7	5/22/2004	0.01	1	0.010	ND	mg/L
Chromium	E200.7	5/22/2004	0.01	1	0.010	0.035	mg/L
Cobalt	E200.7	5/22/2004	0.01	1	0.010	ND	mg/L
Copper	E200.7	5/22/2004	0.01	1	0.010	ND	mg/L
Lead	E200.7	5/22/2004	0.05	1	0.050	ND	mg/L
Mercury	E245.1	5/21/2004	0.005	1	0.0050	ND	mg/L
Molybdenum	E200.7	5/22/2004	0.01	1	0.010	0.19	mg/L
Nickel	E200.7	5/22/2004	0.03	1	0.030	0.051	mg/L
Selenium	E200.7	5/22/2004	0.02	1	0.020	ND	mg/L
Silver	E200.7	5/22/2004	0.01	1	0.010	ND	mg/L
Thallium	E200.7	5/22/2004	0.05	1	0.050	ND	mg/L
Vanadium	E200.7	5/22/2004	0.01	1	0.010	0.020	mg/L
Zinc	E200.7	5/22/2004	0.03	1	0.030	ND	mg/L

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-2 Lab Sample ID: 0405081-040A

Sample Location: Milpitas Library Date Prepared: 5/20/2004

Sample Matrix: WATER **Date/Time Sampled** 5/17/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/21/2004	0.1	1	0.100	ND	mg/L
TPH (Gasoline)	SW8015B	5/20/2004	0.1	1	0.100	ND	mg/L
TPH (Oil)	SW8015B	5/21/2004	0.4	1	0.400	ND	mg/L
Surr: Pentacosane	SW8015B	5/21/2004	0	1	50-150	91.0	%REC
Surr: Trifluorotoluene	SW8015B	5/20/2004	0	1	65-135	99.6	%REC

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-2 Lab Sample ID: 0405081-040A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Sample Matrix: WATER **Date/Time Sampled** 5/17/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
1,1,1,2-Tetrachloroethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,1,1-Trichloroethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,1,2,2-Tetrachloroethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,1,2-Trichloroethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,1-Dichloroethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,1-Dichloroethene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,1-Dichloropropene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,2,3-Trichlorobenzene	SW8260B	5/21/2004	2	1	2.0	ND	μg/L
1,2,3-Trichloropropane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,2,4-Trichlorobenzene	SW8260B	5/21/2004	2	1	2.0	ND	μg/L
1,2,4-Trimethylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,2-Dibromo-3-chloropropane	SW8260B	5/21/2004	2	1	2.0	ND	μg/L
1,2-Dibromoethane (EDB)	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,2-Dichlorobenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,2-Dichloroethane (EDC)	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,2-Dichloropropane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,3,5-Trimethylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,3-Dichlorobenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,3-Dichloropropane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,4-Dichlorobenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
2,2-Dichloropropane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
2-Chloroethyl vinyl ether	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
2-Chlorotoluene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
4-Chlorotoluene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
4-Isopropyltoluene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Benzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Bromobenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Bromochloromethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Bromodichloromethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Bromoform	SW8260B	5/21/2004	2	1	2.0	ND	μg/L

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Lab Sample ID: 0405081-040A

Date Prepared: 5/21/2004

Client Sample ID: EB-2

Sample Location: Milpitas Library

Sample Matrix: WATER **Date/Time Sampled** 5/17/2004

Parameters	Analysis	Date	RL	Dilution	MRL	Result	Units
	Method	Analyzed		Factor			
Bromomethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Carbon tetrachloride	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Chlorobenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Chloroform	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Chloromethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
cis-1,2-Dichloroethene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Dibromochloromethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Dibromomethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Dichlorodifluoromethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Ethyl tert-butyl ether (ETBE)	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Ethylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Freon-113	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Hexachlorobutadiene	SW8260B	5/21/2004	2	1	2.0	ND	μg/L
Isopropyl ether (IPE)	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Isopropylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Methyl tert-butyl ether (MTBE)	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Methylene chloride	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Naphthalene	SW8260B	5/21/2004	2	1	2.0	ND	μg/L
n-Butylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
n-Propylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
sec-Butylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Styrene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
t-Butyl alcohol (t-Butanol)	SW8260B	5/21/2004	29.76	1	30	ND	μg/L
tert-Amyl methyl ether (TAME)	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
tert-Butylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Tetrachloroethene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Toluene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
trans-1,2-Dichloroethene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
trans-1,3-Dichloropropene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Trichloroethene	SW8260B	5/21/2004	2	1	2.0	ND	μg/L

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Lab Sample ID: 0405081-040A

Date Prepared: 5/21/2004

Client Sample ID: EB-2

Sample Location: Milpitas Library

Sample Matrix: WATER **Date/Time Sampled** 5/17/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Trichlorofluoromethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Vinyl chloride	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Xylenes, Total	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Surr: 4-Bromofluorobenzene	SW8260B	5/21/2004	0	1	75-125	82.3	%REC
Surr: Dibromofluoromethane	SW8260B	5/21/2004	0	1	75-125	96.4	%REC
Surr: Toluene-d8	SW8260B	5/21/2004	0	1	75-125	98.4	%REC

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-2 Lab Sample ID: 0405081-040A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Sample Matrix: WATER

Date/Time Sampled 5/17/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Lead	E200.7	5/22/2004	0.05	1	0.050	ND	ma/L

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-8 Lab Sample ID: 0405081-041A

Sample Location: Milpitas Library Date Prepared: 5/20/2004

Sample Matrix: WATER

Date/Time Sampled 5/17/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Gasoline)	SW8015B	5/20/2004	0.1	1	0.100	ND	mg/L
Surr: Trifluorotoluene	SW8015B	5/20/2004	0	1	65-135	83.4	%REC

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Client Sample ID: EB-8 Lab Sample ID: 0405081-041A

Sample Location: Milpitas Library Date Prepared: 5/21/2004

Sample Matrix: WATER **Date/Time Sampled** 5/17/2004

Parameters	Analysis	Date	RL	Dilution	MRL	Result	Units
	Method	Analyzed		Factor			
1,1,1,2-Tetrachloroethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,1,1-Trichloroethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,1,2,2-Tetrachloroethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,1,2-Trichloroethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,1-Dichloroethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,1-Dichloroethene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,1-Dichloropropene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,2,3-Trichlorobenzene	SW8260B	5/21/2004	2	1	2.0	ND	μg/L
1,2,3-Trichloropropane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,2,4-Trichlorobenzene	SW8260B	5/21/2004	2	1	2.0	ND	μg/L
1,2,4-Trimethylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,2-Dibromo-3-chloropropane	SW8260B	5/21/2004	2	1	2.0	ND	μg/L
1,2-Dibromoethane (EDB)	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,2-Dichlorobenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,2-Dichloroethane (EDC)	SW8260B	5/21/2004	1	1	1.0	3.0	μg/L
1,2-Dichloropropane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,3,5-Trimethylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,3-Dichlorobenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,3-Dichloropropane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
1,4-Dichlorobenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
2,2-Dichloropropane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
2-Chloroethyl vinyl ether	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
2-Chlorotoluene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
4-Chlorotoluene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
4-Isopropyltoluene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Benzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Bromobenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Bromochloromethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Bromodichloromethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Bromoform	SW8260B	5/21/2004	2	1	2.0	ND	μg/L

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Lab Sample ID: 0405081-041A

Date Prepared: 5/21/2004

Client Sample ID: EB-8

Sample Location: Milpitas Library

Sample Matrix: WATER **Date/Time Sampled** 5/17/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Bromomethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Carbon tetrachloride	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Chlorobenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Chloroform	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Chloromethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
cis-1,2-Dichloroethene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Dibromochloromethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Dibromomethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Dichlorodifluoromethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Ethyl tert-butyl ether (ETBE)	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Ethylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Freon-113	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Hexachlorobutadiene	SW8260B	5/21/2004	2	1	2.0	ND	μg/L
Isopropyl ether (IPE)	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Isopropylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Methyl tert-butyl ether (MTBE)	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Methylene chloride	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Naphthalene	SW8260B	5/21/2004	2	1	2.0	ND	μg/L
n-Butylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
n-Propylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
sec-Butylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Styrene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
t-Butyl alcohol (t-Butanol)	SW8260B	5/21/2004	29.76	1	30	ND	μg/L
tert-Amyl methyl ether (TAME)	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
tert-Butylbenzene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Tetrachloroethene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Toluene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
trans-1,2-Dichloroethene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
trans-1,3-Dichloropropene	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Trichloroethene	SW8260B	5/21/2004	2	1	2.0	ND	μg/L

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo **Date Reported:** 6/3/2004

Lab Sample ID: 0405081-041A

Date Prepared: 5/21/2004

Client Sample ID: EB-8

Sample Location: Milpitas Library

Sample Matrix: WATER **Date/Time Sampled** 5/17/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Trichlorofluoromethane	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Vinyl chloride	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Xylenes, Total	SW8260B	5/21/2004	1	1	1.0	ND	μg/L
Surr: 4-Bromofluorobenzene	SW8260B	5/21/2004	0	1	75-125	80.2	%REC
Surr: Dibromofluoromethane	SW8260B	5/21/2004	0	1	75-125	95.7	%REC
Surr: Toluene-d8	SW8260B	5/21/2004	0	1	75-125	88.5	%REC

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 6/3/2004

Lab Sample ID: 0405081-042A

Date Prepared: 5/20/2004

Client Sample ID: EB-11

Sample Location: Milpitas Library

Sample Matrix: WATER **Date/Time Sampled** 5/17/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/21/2004	0.23	1	0.230	ND	mg/L
TPH (Oil)	SW8015B	5/21/2004	0.9	1	0.900	ND	mg/L
Surr: Pentacosane	SW8015B	5/21/2004	0	1	50-150	80.6	%RFC

Note: Reporting limit of diesel and oil increased due to limited sample volume available.

Definitions, legends and Notes

Note	Description
ug/kg	Microgram per kilogram (ppb, part per billion).
ug/L	Microgram per liter (ppb, part per billion).
mg/kg	Milligram per kilogram (ppm, part per million).
mg/L	Milligram per liter (ppm, part per million).
LCS/LCSD	Laboratory control sample/laboratory control sample duplicate.
MDL	Method detection limit.
MRL	Modified reporting limit. When sample is subject to dilution, reporting limit times dilution factor yields MRL.
MS/MSD	Matrix spike/matrix spike duplicate.
N/A	Not applicable.
ND	Not detected at or above detection limit.
NR	Not reported.
QC	Quality Control.
RL	Reporting limit.
% RPD	Percent relative difference.
а	pH was measured immediately upon the receipt of the sample, but it was still done outside the holding time.
sub	Analyzed by subcontracting laboratory, Lab Certificate #

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: EB-2-2.5 Lab Sample ID: 0405083-005A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/24/2004-5/25/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	2	1	2.00	ND	mg/Kg
TPH (Gasoline)	SW8015B	5/25/2004	0.1	1	0.100	ND	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	1	4.00	11.7	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	1	50-150	84.1	%REC
Surr: Trifluorotoluene	SW8015B	5/25/2004	0	1	65-135	96.4	%REC

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-005A

Date Prepared: 5/20/2004

Client Sample ID: EB-2-2.5

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
1,1,1,2-Tetrachloroethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,1,1-Trichloroethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,1,2,2-Tetrachloroethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,1,2-Trichloroethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,1-Dichloroethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,1-Dichloroethene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,1-Dichloropropene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2,3-Trichlorobenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2,3-Trichloropropane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2,4-Trichlorobenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2,4-Trimethylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2-Dibromo-3-chloropropane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2-Dibromoethane (EDB)	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2-Dichlorobenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2-Dichloroethane (EDC)	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2-Dichloropropane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,3,5-Trimethylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,3-Dichlorobenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,3-Dichloropropane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,4-Dichlorobenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
2,2-Dichloropropane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
2-Chloroethyl vinyl ether	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
2-Chlorotoluene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
4-Chlorotoluene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
4-Isopropyltoluene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Benzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Bromobenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Bromochloromethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Bromodichloromethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Bromoform	SW8260B	5/20/2004	10	1	10	ND	μg/Kg

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-005A

Date Prepared: 5/20/2004

Client Sample ID: EB-2-2.5

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Carbon tetrachloride	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Chlorobenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Chloroform	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Chloromethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
cis-1,2-Dichloroethene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Dibromochloromethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Dibromomethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Dichlorodifluoromethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Ethyl tert-butyl ether (ETBE)	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Freon-113	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Hexachlorobutadiene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Isopropyl ether (IPE)	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Isopropylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Methyl tert-butyl ether (MTBE)	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Methylene chloride	SW8260B	5/20/2004	50	1	50	ND	μg/Kg
Naphthalene	SW8260B	5/20/2004	20	1	20	ND	μg/Kg
n-Butylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
n-Propylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
sec-Butylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Styrene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
t-Butyl alcohol (t-Butanol)	SW8260B	5/20/2004	50	1	50	ND	μg/Kg
tert-Amyl methyl ether (TAME)	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
tert-Butylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Tetrachloroethene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Toluene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
trans-1,2-Dichloroethene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
trans-1,3-Dichloropropene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Trichloroethene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Trichlorofluoromethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-005A

Date Prepared: 5/20/2004

Client Sample ID: EB-2-2.5

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Vinyl chloride	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Surr: 4-Bromofluorobenzene	SW8260B	5/20/2004	0	1	65-135	74.2	%REC
Surr: Dibromofluoromethane	SW8260B	5/20/2004	0	1	65-135	72.4	%REC
Surr: Toluene-d8	SW8260B	5/20/2004	0	1	65-135	4.02	%REC

Note: Surrogate outside the control limit due to possible matrix interference.

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-005A

Date Prepared: 5/19/2004

Client Sample ID: EB-2-2.5

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
1,2,4-Trichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,2-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,3-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,4-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4,5-Trichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4,6-Trichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dimethylphenol	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
2,4-Dinitrophenol	SW8270C	5/22/2004	1.7	1	1.7	ND	mg/Kg
2,4-Dinitrotoluene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,6-Dinitrotoluene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Chloronaphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Chlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Methylnaphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Nitrophenol	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
3,3´-Dichlorobenzidine	SW8270C	5/22/2004	1.7	1	1.7	ND	mg/Kg
3-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
3-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4,6-Dinitro-2-methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Bromophenyl phenyl ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chloro-3-methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chloroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chlorophenyl phenyl ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Nitrophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthylene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-005A

Date Prepared: 5/19/2004

Client Sample ID: EB-2-2.5

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
	11101104	111111111111111111111111111111111111111		1 110101			
Aniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benz(a)anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzidine	SW8270C	5/22/2004	3.3	1	3.3	ND	mg/Kg
Benzo(a)pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(b)fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(g,h,i)perylene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(k)fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzoic acid	SW8270C	5/22/2004	6.66	1	6.7	ND	mg/Kg
Benzyl alcohol	SW8270C	5/22/2004	6.66	1	6.7	ND	mg/Kg
Bis(2-chloroethoxy)methane	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroethyl)ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroisopropyl)ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-ethylhexyl)phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Butyl benzyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Chrysene	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
Dibenz(a,h)anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Dibenzofuran	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Diethyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Dimethyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Di-n-butyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Di-n-octyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Fluorene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobutadiene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorocyclopentadiene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachloroethane	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Indeno(1,2,3-cd)pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Isophorone	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg

<u>Certified Analytical Report of</u> <u>SemiVolatile Organics By GC/MS</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-005A

Date Prepared: 5/19/2004

Client Sample ID: EB-2-2.5

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Naphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Nitrobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodimethylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodi-n-propylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodiphenylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Pentachlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Phenanthrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Phenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Pyridine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Surr: 2,4,6-Tribromophenol	SW8270C	5/22/2004	0	1	19-122	42.7	%REC
Surr: 2-Fluorobiphenyl	SW8270C	5/22/2004	0	1	24-90	17.3	%REC
Surr: 2-Fluorophenol	SW8270C	5/22/2004	0	1	25-121	36.6	%REC
Surr: Nitrobenzene-d5	SW8270C	5/22/2004	0	1	17-96	17.1	%REC
Surr: Phenol-d6	SW8270C	5/22/2004	0	1	16-91	40.9	%REC
Surr: p-Terphenyl-d14	SW8270C	5/22/2004	0	1	49-138	37.6	%REC

Note: Surrogate recovery of 2-Fluorobiphenyl and p-Terphenyl-d14 fall outside control range due to possible matrix interference.

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-005A

Date Prepared: 5/20/2004

Client Sample ID: EB-2-2.5

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL
Date/Time Sampled 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Antimony	SW6010B	5/21/2004	1.419	1	1.4	ND	mg/Kg
Arsenic	SW6010B	5/21/2004	1.747	1	1.8	ND	mg/Kg
Barium	SW6010B	5/21/2004	1.329	1	1.4	25	mg/Kg
Beryllium	SW6010B	5/21/2004	0.84	1	0.86	ND	mg/Kg
Cadmium	SW6010B	5/21/2004	0.251	1	0.26	1.4	mg/Kg
Chromium	SW6010B	5/21/2004	0.218	1	0.22	29	mg/Kg
Cobalt	SW6010B	5/21/2004	0.182	1	0.19	4.6	mg/Kg
Copper	SW6010B	5/21/2004	0.242	1	0.25	32	mg/Kg
Lead	SW6010B	5/21/2004	0.369	1	0.38	36	mg/Kg
Mercury	SW7471A	5/21/2004	0.1	1	0.092	0.25	mg/Kg
Molybdenum	SW6010B	5/21/2004	0.245	1	0.25	ND	mg/Kg
Nickel	SW6010B	5/21/2004	0.199	1	0.20	28	mg/Kg
Selenium	SW6010B	5/21/2004	0.781	1	0.80	ND	mg/Kg
Silver	SW6010B	5/21/2004	0.287	1	0.29	ND	mg/Kg
Thallium	SW6010B	5/21/2004	2.666	1	2.7	ND	mg/Kg
Vanadium	SW6010B	5/21/2004	0.793	1	0.81	25	mg/Kg
Zinc	SW6010B	5/21/2004	2.073	1	2.1	74	mg/Kg

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-006A

Client Sample ID: EB-2-5.0

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/24/2004-5/25/2004

Sample Matrix: SOIL

Date/Time Sampled 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	2	1	2.00	ND	mg/Kg
TPH (Gasoline)	SW8015B	5/25/2004	0.1	1	0.100	ND	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	1	4.00	47.9	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	1	50-150	87.7	%REC
Surr: Trifluorotoluene	SW8015B	5/25/2004	0	1	65-135	96.5	%REC

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-006A

Date Prepared: 5/20/2004

Client Sample ID: EB-2-5.0

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL
Date/Time Sampled 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
1,1,1,2-Tetrachloroethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,1,1-Trichloroethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,1,2,2-Tetrachloroethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,1,2-Trichloroethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,1-Dichloroethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,1-Dichloroethene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,1-Dichloropropene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2,3-Trichlorobenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2,3-Trichloropropane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2,4-Trichlorobenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2,4-Trimethylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2-Dibromo-3-chloropropane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2-Dibromoethane (EDB)	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2-Dichlorobenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2-Dichloroethane (EDC)	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2-Dichloropropane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,3,5-Trimethylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,3-Dichlorobenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,3-Dichloropropane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,4-Dichlorobenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
2,2-Dichloropropane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
2-Chloroethyl vinyl ether	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
2-Chlorotoluene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
4-Chlorotoluene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
4-Isopropyltoluene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Benzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Bromobenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Bromochloromethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Bromodichloromethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Bromoform	SW8260B	5/20/2004	10	1	10	ND	μg/Kg

<u>Certified Analytical Report of</u> <u>Purgeable Volatile Organics</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-006A

Date Prepared: 5/20/2004

Client Sample ID: EB-2-5.0

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Carbon tetrachloride	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Chlorobenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Chloroform	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Chloromethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
cis-1,2-Dichloroethene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Dibromochloromethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Dibromomethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Dichlorodifluoromethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Ethyl tert-butyl ether (ETBE)	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Freon-113	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Hexachlorobutadiene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
sopropyl ether (IPE)	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
sopropylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Methyl tert-butyl ether (MTBE)	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Methylene chloride	SW8260B	5/20/2004	50	1	50	ND	μg/Kg
Naphthalene	SW8260B	5/20/2004	20	1	20	ND	μg/Kg
n-Butylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
n-Propylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
sec-Butylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Styrene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
-Butyl alcohol (t-Butanol)	SW8260B	5/20/2004	50	1	50	ND	μg/Kg
ert-Amyl methyl ether (TAME)	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
tert-Butylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Tetrachloroethene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Toluene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
rans-1,2-Dichloroethene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
rans-1,3-Dichloropropene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Trichloroethene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Frichlorofluoromethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg

<u>Certified Analytical Report of</u> <u>Purgeable Volatile Organics</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-006A

Date Prepared: 5/20/2004

Client Sample ID: EB-2-5.0

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Vinyl chloride	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Surr: 4-Bromofluorobenzene	SW8260B	5/20/2004	0	1	65-135	84.3	%REC
Surr: Dibromofluoromethane	SW8260B	5/20/2004	0	1	65-135	83.5	%REC
Surr: Toluene-d8	SW8260B	5/20/2004	0	1	65-135	0	%REC

Note: Surrogate outside the control limit due to possible matrix interference.

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-006A

Date Prepared: 5/19/2004

Client Sample ID: EB-2-5.0

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
1,2,4-Trichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,2-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,3-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,4-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4,5-Trichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4,6-Trichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dimethylphenol	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
2,4-Dinitrophenol	SW8270C	5/22/2004	1.7	1	1.7	ND	mg/Kg
2,4-Dinitrotoluene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,6-Dinitrotoluene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Chloronaphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Chlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Methylnaphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Nitrophenol	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
3,3´-Dichlorobenzidine	SW8270C	5/22/2004	1.7	1	1.7	ND	mg/Kg
3-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
3-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4,6-Dinitro-2-methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Bromophenyl phenyl ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chloro-3-methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chloroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chlorophenyl phenyl ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Nitrophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthylene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-006A

Date Prepared: 5/19/2004

Client Sample ID: EB-2-5.0

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Aniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benz(a)anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzidine	SW8270C	5/22/2004	3.3	1	3.3	ND	mg/Kg
Benzo(a)pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(b)fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(g,h,i)perylene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(k)fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzoic acid	SW8270C	5/22/2004	6.66	1	6.7	ND	mg/Kg
Benzyl alcohol	SW8270C	5/22/2004	6.66	1	6.7	ND	mg/Kg
Bis(2-chloroethoxy)methane	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroethyl)ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroisopropyl)ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-ethylhexyl)phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Butyl benzyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Chrysene	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
Dibenz(a,h)anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Dibenzofuran	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Diethyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Dimethyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Di-n-butyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Di-n-octyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Fluorene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobutadiene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorocyclopentadiene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachloroethane	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Indeno(1,2,3-cd)pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Isophorone	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg

<u>Certified Analytical Report of</u> <u>SemiVolatile Organics By GC/MS</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-006A

Date Prepared: 5/19/2004

Client Sample ID: EB-2-5.0

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Naphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Nitrobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodimethylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodi-n-propylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodiphenylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Pentachlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Phenanthrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Phenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Pyridine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Surr: 2,4,6-Tribromophenol	SW8270C	5/22/2004	0	1	19-122	39.2	%REC
Surr: 2-Fluorobiphenyl	SW8270C	5/22/2004	0	1	24-90	19.7	%REC
Surr: 2-Fluorophenol	SW8270C	5/22/2004	0	1	25-121	40.2	%REC
Surr: Nitrobenzene-d5	SW8270C	5/22/2004	0	1	17-96	17.5	%REC
Surr: Phenol-d6	SW8270C	5/22/2004	0	1	16-91	46.3	%REC
Surr: p-Terphenyl-d14	SW8270C	5/22/2004	0	1	49-138	46.8	%REC

Note: Surrogate recovery of 2-Fluorobiphenyl and p-Terphenyl-d14 fall outside control range due to possible matrix interference.

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-006A

Date Prepared: 5/20/2004

Client Sample ID: EB-2-5.0

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Antimony	SW6010B	5/21/2004	1.419	1	1.4	ND	mg/Kg
Arsenic	SW6010B	5/21/2004	1.747	1	1.7	ND	mg/Kg
Barium	SW6010B	5/21/2004	1.329	1	1.3	18	mg/Kg
Beryllium	SW6010B	5/21/2004	0.84	1	0.82	ND	mg/Kg
Cadmium	SW6010B	5/21/2004	0.251	1	0.24	1.6	mg/Kg
Chromium	SW6010B	5/21/2004	0.218	1	0.21	35	mg/Kg
Cobalt	SW6010B	5/21/2004	0.182	1	0.18	7.5	mg/Kg
Copper	SW6010B	5/21/2004	0.242	1	0.23	18	mg/Kg
Lead	SW6010B	5/21/2004	0.369	1	0.36	8.5	mg/Kg
Mercury	SW7471A	5/21/2004	0.1	1	0.085	ND	mg/Kg
Molybdenum	SW6010B	5/21/2004	0.245	1	0.24	ND	mg/Kg
Nickel	SW6010B	5/21/2004	0.199	1	0.19	34	mg/Kg
Selenium	SW6010B	5/21/2004	0.781	1	0.76	ND	mg/Kg
Silver	SW6010B	5/21/2004	0.287	1	0.28	ND	mg/Kg
Thallium	SW6010B	5/21/2004	2.666	1	2.6	ND	mg/Kg
Vanadium	SW6010B	5/21/2004	0.793	1	0.77	34	mg/Kg
Zinc	SW6010B	5/21/2004	2.073	1	2.0	39	mg/Kg

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: EB-2-7.5 Lab Sample ID: 0405083-007A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/24/2004-5/26/2004

Sample Matrix: SOIL
Date/Time Sampled 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	7	10	70.0	ND	mg/Kg
TPH (Gasoline)	SW8015B	5/26/2004	0.1	20	2.00	18.3	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	10	40.0	492	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	10	50-150	86.7	%REC
Surr: Trifluorotoluene	SW8015B	5/26/2004	0	20	65-135	85.0	%REC

Note: Reporting limits increased due to high level of heavy hydrocarbons.

Note: Gasoline chromatographic response does not resemble a typical fuel pattern.

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-007A

Date Prepared: 5/26/2004

Client Sample ID: EB-2-7.5

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
1,1,1,2-Tetrachloroethane	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
1,1,1-Trichloroethane	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
1,1,2,2-Tetrachloroethane	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
1,1,2-Trichloroethane	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
1,1-Dichloroethane	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
1,1-Dichloroethene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
1,1-Dichloropropene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
1,2,3-Trichlorobenzene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
1,2,3-Trichloropropane	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
1,2,4-Trichlorobenzene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
1,2,4-Trimethylbenzene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
1,2-Dibromo-3-chloropropane	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
1,2-Dibromoethane (EDB)	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
1,2-Dichlorobenzene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
1,2-Dichloroethane (EDC)	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
1,2-Dichloropropane	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
1,3,5-Trimethylbenzene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
1,3-Dichlorobenzene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
1,3-Dichloropropane	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
1,4-Dichlorobenzene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
2,2-Dichloropropane	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
2-Chloroethyl vinyl ether	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
2-Chlorotoluene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
4-Chlorotoluene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
4-Isopropyltoluene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Benzene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Bromobenzene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Bromochloromethane	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Bromodichloromethane	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Bromoform	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg

<u>Certified Analytical Report of</u> <u>Purgeable Volatile Organics</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-007A

Date Prepared: 5/26/2004

Client Sample ID: EB-2-7.5

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Carbon tetrachloride	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Chlorobenzene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Chloroform	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Chloromethane	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
cis-1,2-Dichloroethene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Dibromochloromethane	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Dibromomethane	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Dichlorodifluoromethane	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Ethyl tert-butyl ether (ETBE)	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Ethylbenzene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Freon-113	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Hexachlorobutadiene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
sopropyl ether (IPE)	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
sopropylbenzene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Methyl tert-butyl ether (MTBE)	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Methylene chloride	SW8260B	5/26/2004	50	33.3	1700	ND	μg/Kg
Naphthalene	SW8260B	5/26/2004	20	33.3	670	ND	μg/Kg
n-Butylbenzene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
n-Propylbenzene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
sec-Butylbenzene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Styrene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
-Butyl alcohol (t-Butanol)	SW8260B	5/26/2004	50	33.3	1700	ND	μg/Kg
tert-Amyl methyl ether (TAME)	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
tert-Butylbenzene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Tetrachloroethene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Toluene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
rans-1,2-Dichloroethene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
rans-1,3-Dichloropropene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Trichloroethene	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Frichlorofluoromethane	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg

<u>Certified Analytical Report of</u> <u>Purgeable Volatile Organics</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-007A

Date Prepared: 5/26/2004

Client Sample ID: EB-2-7.5

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL
Date/Time Sampled 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Vinyl chloride	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Xylenes, Total	SW8260B	5/26/2004	10	33.3	330	ND	μg/Kg
Surr: 4-Bromofluorobenzene	SW8260B	5/26/2004	0	33.3	65-135	88.6	%REC
Surr: Dibromofluoromethane	SW8260B	5/26/2004	0	33.3	65-135	101	%REC
Surr: Toluene-d8	SW8260B	5/26/2004	0	33.3	65-135	78.7	%REC

Note: Sample was diluted due to matrix interference.

<u>Certified Analytical Report of</u> <u>SemiVolatile Organics By GC/MS</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-007A

Date Prepared: 5/19/2004

Client Sample ID: EB-2-7.5

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
	Method	Anaryzeu		Pactor			
1,2,4-Trichlorobenzene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
1,2-Dichlorobenzene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
1,3-Dichlorobenzene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
1,4-Dichlorobenzene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2,4,5-Trichlorophenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2,4,6-Trichlorophenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dichlorophenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dimethylphenol	SW8270C	5/23/2004	0.66	1	0.66	ND	mg/Kg
2,4-Dinitrophenol	SW8270C	5/23/2004	1.7	1	1.7	ND	mg/Kg
2,4-Dinitrotoluene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2,6-Dinitrotoluene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2-Chloronaphthalene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2-Chlorophenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2-Methylnaphthalene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2-Methylphenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2-Nitroaniline	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2-Nitrophenol	SW8270C	5/23/2004	0.66	1	0.66	ND	mg/Kg
3,3´-Dichlorobenzidine	SW8270C	5/23/2004	1.7	1	1.7	ND	mg/Kg
3-Methylphenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
3-Nitroaniline	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
4,6-Dinitro-2-methylphenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
4-Bromophenyl phenyl ether	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
4-Chloro-3-methylphenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
4-Chloroaniline	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
4-Chlorophenyl phenyl ether	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
4-Methylphenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
4-Nitroaniline	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
4-Nitrophenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthylene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-007A

Date Prepared: 5/19/2004

Client Sample ID: EB-2-7.5

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Aniline	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Anthracene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Benz(a)anthracene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Benzidine	SW8270C	5/23/2004	3.3	1	3.3	ND	mg/Kg
Benzo(a)pyrene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Benzo(b)fluoranthene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Benzo(g,h,i)perylene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Benzo(k)fluoranthene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Benzoic acid	SW8270C	5/23/2004	6.66	1	6.7	ND	mg/Kg
Benzyl alcohol	SW8270C	5/23/2004	6.66	1	6.7	ND	mg/Kg
Bis(2-chloroethoxy)methane	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroethyl)ether	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroisopropyl)ether	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-ethylhexyl)phthalate	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Butyl benzyl phthalate	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Chrysene	SW8270C	5/23/2004	0.66	1	0.66	ND	mg/Kg
Dibenz(a,h)anthracene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Dibenzofuran	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Diethyl phthalate	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Dimethyl phthalate	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Di-n-butyl phthalate	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Di-n-octyl phthalate	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Fluoranthene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Fluorene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobenzene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobutadiene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorocyclopentadiene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Hexachloroethane	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Indeno(1,2,3-cd)pyrene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Isophorone	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg

<u>Certified Analytical Report of</u> <u>SemiVolatile Organics By GC/MS</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-007A

Date Prepared: 5/19/2004

Client Sample ID: EB-2-7.5

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Naphthalene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Nitrobenzene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodimethylamine	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodi-n-propylamine	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodiphenylamine	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Pentachlorophenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Phenanthrene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Phenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Pyrene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Pyridine	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Surr: 2,4,6-Tribromophenol	SW8270C	5/23/2004	0	1	19-122	64.7	%REC
Surr: 2-Fluorobiphenyl	SW8270C	5/23/2004	0	1	24-90	27.9	%REC
Surr: 2-Fluorophenol	SW8270C	5/23/2004	0	1	25-121	58.1	%REC
Surr: Nitrobenzene-d5	SW8270C	5/23/2004	0	1	17-96	11.5	%REC
Surr: Phenol-d6	SW8270C	5/23/2004	0	1	16-91	71.8	%REC
Surr: p-Terphenyl-d14	SW8270C	5/23/2004	0	1	49-138	53.6	%REC

Note: Surrogate recovery of Nitrobenzene-d5 falls outside control range due to possible matrix interference.

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-007A

Date Prepared: 5/20/2004

Client Sample ID: EB-2-7.5

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL
Date/Time Sampled 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Antimony	SW6010B	5/21/2004	1.419	1	1.4	ND	mg/Kg
Arsenic	SW6010B	5/21/2004	1.747	1	1.8	ND	mg/Kg
Barium	SW6010B	5/21/2004	1.329	1	1.3	97	mg/Kg
Beryllium	SW6010B	5/21/2004	0.84	1	0.84	ND	mg/Kg
Cadmium	SW6010B	5/21/2004	0.251	1	0.25	4.2	mg/Kg
Chromium	SW6010B	5/21/2004	0.218	1	0.22	53	mg/Kg
Cobalt	SW6010B	5/21/2004	0.182	1	0.18	7.1	mg/Kg
Copper	SW6010B	5/21/2004	0.242	1	0.24	85	mg/Kg
Lead	SW6010B	5/21/2004	0.369	1	0.37	180	mg/Kg
Mercury	SW7471A	5/21/2004	0.1	1	0.086	1.2	mg/Kg
Molybdenum	SW6010B	5/21/2004	0.245	1	0.25	ND	mg/Kg
Nickel	SW6010B	5/21/2004	0.199	1	0.20	46	mg/Kg
Selenium	SW6010B	5/21/2004	0.781	1	0.78	ND	mg/Kg
Silver	SW6010B	5/21/2004	0.287	1	0.29	2.7	mg/Kg
Thallium	SW6010B	5/21/2004	2.666	1	2.7	ND	mg/Kg
Vanadium	SW6010B	5/21/2004	0.793	1	0.80	41	mg/Kg
Zinc	SW6010B	5/21/2004	2.073	1	2.1	310	mg/Kg

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: EB-2-10.0 Lab Sample ID: 0405083-008A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/24/2004-5/25/2004

Sample Matrix: SOIL

Date/Time Sampled 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	4	10	40.0	ND	mg/Kg
TPH (Gasoline)	SW8015B	5/25/2004	0.1	1	0.100	0.557	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	10	40.0	1190	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	10	50-150	110	%REC
Surr: Trifluorotoluene	SW8015B	5/25/2004	0	1	65-135	79.6	%REC

Note: Reporting limits increased due to high level of heavy hydrocarbons.

Note: Gasoline chromatographic response does not resemble a typical fuel pattern.

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: EB-2-10.0 Lab Sample ID: 0405083-008A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/26/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution	MRL	Result	Units
	Method	Anaiyzeu		Factor			
1,1,1,2-Tetrachloroethane	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
1,1,1-Trichloroethane	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
1,1,2,2-Tetrachloroethane	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
1,1,2-Trichloroethane	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
1,1-Dichloroethane	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
1,1-Dichloroethene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
1,1-Dichloropropene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
1,2,3-Trichlorobenzene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
1,2,3-Trichloropropane	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
1,2,4-Trichlorobenzene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
1,2,4-Trimethylbenzene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
1,2-Dibromo-3-chloropropane	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
1,2-Dibromoethane (EDB)	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
1,2-Dichlorobenzene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
1,2-Dichloroethane (EDC)	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
1,2-Dichloropropane	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
1,3,5-Trimethylbenzene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
1,3-Dichlorobenzene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
1,3-Dichloropropane	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
1,4-Dichlorobenzene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
2,2-Dichloropropane	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
2-Chloroethyl vinyl ether	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
2-Chlorotoluene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
4-Chlorotoluene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
4-Isopropyltoluene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Benzene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Bromobenzene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Bromochloromethane	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Bromodichloromethane	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Bromoform	SW8260B	5/26/2004	10	20	200	ND	μg/Kg

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-008A

Date Prepared: 5/26/2004

Client Sample ID: EB-2-10.0

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Carbon tetrachloride	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Chlorobenzene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Chloroform	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Chloromethane	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
cis-1,2-Dichloroethene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Dibromochloromethane	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Dibromomethane	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Dichlorodifluoromethane	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Ethyl tert-butyl ether (ETBE)	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Ethylbenzene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Freon-113	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Hexachlorobutadiene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
sopropyl ether (IPE)	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
sopropylbenzene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Methyl tert-butyl ether (MTBE)	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Methylene chloride	SW8260B	5/26/2004	50	20	1000	ND	μg/Kg
Naphthalene	SW8260B	5/26/2004	20	20	400	ND	μg/Kg
n-Butylbenzene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
n-Propylbenzene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
sec-Butylbenzene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Styrene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
t-Butyl alcohol (t-Butanol)	SW8260B	5/26/2004	50	20	1000	ND	μg/Kg
tert-Amyl methyl ether (TAME)	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
tert-Butylbenzene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Tetrachloroethene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Toluene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
trans-1,2-Dichloroethene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
rans-1,3-Dichloropropene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Trichloroethene	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Trichlorofluoromethane	SW8260B	5/26/2004	10	20	200	ND	μg/Kg

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-008A

Date Prepared: 5/26/2004

Client Sample ID: EB-2-10.0

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Vinyl chloride	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Xylenes, Total	SW8260B	5/26/2004	10	20	200	ND	μg/Kg
Surr: 4-Bromofluorobenzene	SW8260B	5/26/2004	0	20	65-135	93.1	%REC
Surr: Dibromofluoromethane	SW8260B	5/26/2004	0	20	65-135	94.3	%REC
Surr: Toluene-d8	SW8260B	5/26/2004	0	20	65-135	71.5	%REC

Note: Sample was diluted due to matrix interference.

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-008A

Date Prepared: 5/19/2004

Client Sample ID: EB-2-10.0

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
1,2,4-Trichlorobenzene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
1,2-Dichlorobenzene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
1,3-Dichlorobenzene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
1,4-Dichlorobenzene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2,4,5-Trichlorophenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2,4,6-Trichlorophenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dichlorophenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dimethylphenol	SW8270C	5/23/2004	0.66	1	0.66	ND	mg/Kg
2,4-Dinitrophenol	SW8270C	5/23/2004	1.7	1	1.7	ND	mg/Kg
2,4-Dinitrotoluene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2,6-Dinitrotoluene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2-Chloronaphthalene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2-Chlorophenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2-Methylnaphthalene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2-Methylphenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2-Nitroaniline	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
2-Nitrophenol	SW8270C	5/23/2004	0.66	1	0.66	ND	mg/Kg
3,3´-Dichlorobenzidine	SW8270C	5/23/2004	1.7	1	1.7	ND	mg/Kg
3-Methylphenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
3-Nitroaniline	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
4,6-Dinitro-2-methylphenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
4-Bromophenyl phenyl ether	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
4-Chloro-3-methylphenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
4-Chloroaniline	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
4-Chlorophenyl phenyl ether	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
4-Methylphenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
4-Nitroaniline	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
4-Nitrophenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthylene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg

<u>Certified Analytical Report of</u> <u>SemiVolatile Organics By GC/MS</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-008A

Date Prepared: 5/19/2004

Client Sample ID: EB-2-10.0

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Aniline	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Anthracene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Benz(a)anthracene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Benzidine	SW8270C	5/23/2004	3.3	1	3.3	ND	mg/Kg
Benzo(a)pyrene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Benzo(b)fluoranthene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Benzo(g,h,i)perylene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Benzo(k)fluoranthene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Benzoic acid	SW8270C	5/23/2004	6.66	1	6.7	ND	mg/Kg
Benzyl alcohol	SW8270C	5/23/2004	6.66	1	6.7	ND	mg/Kg
Bis(2-chloroethoxy)methane	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroethyl)ether	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroisopropyl)ether	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-ethylhexyl)phthalate	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Butyl benzyl phthalate	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Chrysene	SW8270C	5/23/2004	0.66	1	0.66	ND	mg/Kg
Dibenz(a,h)anthracene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Dibenzofuran	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Diethyl phthalate	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Dimethyl phthalate	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Di-n-butyl phthalate	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Di-n-octyl phthalate	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Fluoranthene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Fluorene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobenzene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobutadiene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorocyclopentadiene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Hexachloroethane	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
ndeno(1,2,3-cd)pyrene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
sophorone	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg

<u>Certified Analytical Report of</u> <u>SemiVolatile Organics By GC/MS</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-008A

Date Prepared: 5/19/2004

Client Sample ID: EB-2-10.0

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Naphthalene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Nitrobenzene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodimethylamine	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodi-n-propylamine	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodiphenylamine	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Pentachlorophenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Phenanthrene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Phenol	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Pyrene	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Pyridine	SW8270C	5/23/2004	0.33	1	0.33	ND	mg/Kg
Surr: 2,4,6-Tribromophenol	SW8270C	5/23/2004	0	1	19-122	64.4	%REC
Surr: 2-Fluorobiphenyl	SW8270C	5/23/2004	0	1	24-90	32.6	%REC
Surr: 2-Fluorophenol	SW8270C	5/23/2004	0	1	25-121	58.3	%REC
Surr: Nitrobenzene-d5	SW8270C	5/23/2004	0	1	17-96	13.3	%REC
Surr: Phenol-d6	SW8270C	5/23/2004	0	1	16-91	75.0	%REC
Surr: p-Terphenyl-d14	SW8270C	5/23/2004	0	1	49-138	60.2	%REC

Note: Surrogate recovery of Nitrobenzene-d5 falls outside control range due to possible matrix interference.

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-008A

Date Prepared: 5/20/2004

Client Sample ID: EB-2-10.0

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL
Date/Time Sampled 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Antimony	SW6010B	5/21/2004	1.419	1	1.4	ND	mg/Kg
Arsenic	SW6010B	5/21/2004	1.747	1	1.8	15	mg/Kg
Barium	SW6010B	5/21/2004	1.329	1	1.4	55	mg/Kg
Beryllium	SW6010B	5/21/2004	0.84	1	0.86	ND	mg/Kg
Cadmium	SW6010B	5/21/2004	0.251	1	0.26	2.6	mg/Kg
Chromium	SW6010B	5/21/2004	0.218	1	0.22	46	mg/Kg
Cobalt	SW6010B	5/21/2004	0.182	1	0.19	8.3	mg/Kg
Copper	SW6010B	5/21/2004	0.242	1	0.25	180	mg/Kg
Lead	SW6010B	5/21/2004	0.369	1	0.38	190	mg/Kg
Mercury	SW7471A	5/21/2004	0.1	1	0.10	0.60	mg/Kg
Molybdenum	SW6010B	5/21/2004	0.245	1	0.25	ND	mg/Kg
Nickel	SW6010B	5/21/2004	0.199	1	0.20	120	mg/Kg
Selenium	SW6010B	5/21/2004	0.781	1	0.80	ND	mg/Kg
Silver	SW6010B	5/21/2004	0.287	1	0.29	1.3	mg/Kg
Thallium	SW6010B	5/21/2004	2.666	1	2.7	ND	mg/Kg
Vanadium	SW6010B	5/21/2004	0.793	1	0.81	32	mg/Kg
Zinc	SW6010B	5/21/2004	2.073	1	2.1	230	mg/Kg

Certified Analytical Report of Metals Followed by TCLP

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp. of EB-1-2.5,5,7.5,10 Lab Sample ID: 0405083-013A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/20/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Lead	SW6010B	5/20/2004	0.05	1	0.050	0.16	mg/L

<u>Certified Analytical Report of</u> <u>Metals Followed by WET extraction (STLC)</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp.of EB-1-2.5,5,7.5,10 **Lab Sample ID:** 0405083-013A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/20/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Lead	SW6010B	5/20/2004	0.05	10	0.500	3.04	mg/L

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp. of EB-1-2.5,5,7.5,10 Lab Sample ID: 0405083-013A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/17/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/18/2004	9	1	9.00	ND	mg/Kg
TPH (Gasoline)	SW8015B	5/18/2004	0.1	1	0.100	1.08	mg/Kg
TPH (Oil)	SW8015B	5/18/2004	4	1	4.00	108	mg/Kg
Surr: Pentacosane	SW8015B	5/18/2004	0	1	50-150	148	%REC
Surr: Trifluorotoluene	SW8015B	5/18/2004	0	1	65-135	110	%REC

Note: Diesel reporting limit increased due to presence of heavier hydrocarbons.

Note: Gasoline chromatographic response does not resemble a typical fuel pattern.

<u>Certified Analytical Report of</u> <u>Purgeable Volatile Organics</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Date Prepared: 5/17/2004

Client Sample ID: Comp.of EB-1-2.5,5,7.5,10 Lab Sample ID: 0405083-013A

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
1,1,1,2-Tetrachloroethane	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
1,1,1-Trichloroethane	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
1,1,2,2-Tetrachloroethane	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
1,1,2-Trichloroethane	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
1,1-Dichloroethane	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
1,1-Dichloroethene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
1,1-Dichloropropene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
1,2,3-Trichlorobenzene	SW8260B	5/17/2004	10	1	10	33	μg/Kg
1,2,3-Trichloropropane	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
1,2,4-Trichlorobenzene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
1,2,4-Trimethylbenzene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
1,2-Dibromo-3-chloropropane	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
1,2-Dibromoethane (EDB)	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
1,2-Dichlorobenzene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
1,2-Dichloroethane (EDC)	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
1,2-Dichloropropane	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
1,3,5-Trimethylbenzene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
1,3-Dichlorobenzene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
1,3-Dichloropropane	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
1,4-Dichlorobenzene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
2,2-Dichloropropane	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
2-Chloroethyl vinyl ether	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
2-Chlorotoluene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
4-Chlorotoluene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
4-Isopropyltoluene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Benzene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Bromobenzene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Bromochloromethane	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Bromodichloromethane	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Bromoform	SW8260B	5/17/2004	10	1	10	ND	μg/Kg

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp. of EB-1-2.5,5,7.5,10 Lab Sample ID: 0405083-013A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/17/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Carbon tetrachloride	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Chlorobenzene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Chloroform	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Chloromethane	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
cis-1,2-Dichloroethene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Dibromochloromethane	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Dibromomethane	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Dichlorodifluoromethane	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Ethyl tert-butyl ether (ETBE)	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Freon-113	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Hexachlorobutadiene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Isopropyl ether (IPE)	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Isopropylbenzene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Methyl tert-butyl ether (MTBE)	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Methylene chloride	SW8260B	5/17/2004	50	1	50	ND	μg/Kg
Naphthalene	SW8260B	5/17/2004	20	1	20	130	μg/Kg
n-Butylbenzene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
n-Propylbenzene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
sec-Butylbenzene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Styrene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
t-Butyl alcohol (t-Butanol)	SW8260B	5/17/2004	50	1	50	ND	μg/Kg
tert-Amyl methyl ether (TAME)	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
tert-Butylbenzene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Tetrachloroethene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Toluene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
trans-1,2-Dichloroethene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
trans-1,3-Dichloropropene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Trichloroethene	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Trichlorofluoromethane	SW8260B	5/17/2004	10	1	10	ND	μg/Kg

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp. of EB-1-2.5,5,7.5,10 Lab Sample ID: 0405083-013A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/17/2004

Sample Matrix: SOIL
Date/Time Sampled 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Vinyl chloride	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8260B	5/17/2004	10	1	10	ND	μg/Kg
Surr: 4-Bromofluorobenzene	SW8260B	5/17/2004	0	1	65-135	112	%REC
Surr: Dibromofluoromethane	SW8260B	5/17/2004	0	1	65-135	104	%REC
Surr: Toluene-d8	SW8260B	5/17/2004	0	1	65-135	137	%REC

Note: Surrogate outside the control limit due to possible matrix interference.

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp. of EB-1-2.5,5,7.5,10 Lab Sample ID: 0405083-013A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/17/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
1,2,4-Trichlorobenzene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
1,2-Dichlorobenzene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
1,3-Dichlorobenzene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
1,4-Dichlorobenzene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2,4,5-Trichlorophenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2,4,6-Trichlorophenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dichlorophenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dimethylphenol	SW8270C	5/17/2004	0.66	1	0.66	ND	mg/Kg
2,4-Dinitrophenol	SW8270C	5/17/2004	1.7	1	1.7	ND	mg/Kg
2,4-Dinitrotoluene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2,6-Dinitrotoluene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2-Chloronaphthalene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2-Chlorophenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2-Methylnaphthalene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2-Methylphenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2-Nitroaniline	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2-Nitrophenol	SW8270C	5/17/2004	0.66	1	0.66	ND	mg/Kg
3,3'-Dichlorobenzidine	SW8270C	5/17/2004	1.7	1	1.7	ND	mg/Kg
3-Methylphenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
3-Nitroaniline	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
4,6-Dinitro-2-methylphenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
4-Bromophenyl phenyl ether	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
4-Chloro-3-methylphenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
4-Chloroaniline	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
4-Chlorophenyl phenyl ether	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
4-Methylphenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
4-Nitroaniline	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
4-Nitrophenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthylene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp. of EB-1-2.5,5,7.5,10 Lab Sample ID: 0405083-013A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/17/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Aniline	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Anthracene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Benz(a)anthracene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Benzidine	SW8270C	5/17/2004	3.3	1	3.3	ND	mg/Kg
Benzo(a)pyrene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Benzo(b)fluoranthene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Benzo(g,h,i)perylene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Benzo(k)fluoranthene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Benzoic acid	SW8270C	5/17/2004	6.66	1	6.7	ND	mg/Kg
Benzyl alcohol	SW8270C	5/17/2004	6.66	1	6.7	ND	mg/Kg
Bis(2-chloroethoxy)methane	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroethyl)ether	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroisopropyl)ether	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-ethylhexyl)phthalate	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Butyl benzyl phthalate	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Chrysene	SW8270C	5/17/2004	0.66	1	0.66	ND	mg/Kg
Dibenz(a,h)anthracene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Dibenzofuran	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Diethyl phthalate	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Dimethyl phthalate	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Di-n-butyl phthalate	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Di-n-octyl phthalate	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Fluoranthene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Fluorene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobenzene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobutadiene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorocyclopentadiene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Hexachloroethane	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Indeno(1,2,3-cd)pyrene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Isophorone	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg

<u>Certified Analytical Report of</u> <u>SemiVolatile Organics By GC/MS</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp. of EB-1-2.5,5,7.5,10 Lab Sample ID: 0405083-013A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/17/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Naphthalene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Nitrobenzene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodimethylamine	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodi-n-propylamine	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodiphenylamine	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Pentachlorophenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Phenanthrene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Phenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Pyrene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Pyridine	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Surr: 2,4,6-Tribromophenol	SW8270C	5/17/2004	0	1	19-122	47.3	%REC
Surr: 2-Fluorobiphenyl	SW8270C	5/17/2004	0	1	24-90	23.3	%REC
Surr: 2-Fluorophenol	SW8270C	5/17/2004	0	1	25-121	42.1	%REC
Surr: Nitrobenzene-d5	SW8270C	5/17/2004	0	1	17-96	14.0	%REC
Surr: Phenol-d6	SW8270C	5/17/2004	0	1	16-91	40.8	%REC
Surr: p-Terphenyl-d14	SW8270C	5/17/2004	0	1	49-138	45.9	%REC

Note: Surrogate recoveries fall outside control limits due to matrix interference.

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp. of EB-1-2.5,5,7.5,10 Lab Sample ID: 0405083-013A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/17/2004-5/18/2004

Sample Matrix: SOIL

Date/Time Sampled 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Antimony	SW6010B	5/18/2004	1.419	1	1.4	ND	mg/Kg
Arsenic	SW6010B	5/18/2004	1.747	1	1.7	ND	mg/Kg
Barium	SW6010B	5/18/2004	1.329	1	1.3	68	mg/Kg
Beryllium	SW6010B	5/18/2004	0.84	1	0.82	ND	mg/Kg
Cadmium	SW6010B	5/18/2004	0.251	1	0.25	2.5	mg/Kg
Chromium	SW6010B	5/18/2004	0.218	1	0.21	43	mg/Kg
Cobalt	SW6010B	5/18/2004	0.182	1	0.18	7.1	mg/Kg
Copper	SW6010B	5/18/2004	0.242	1	0.24	68	mg/Kg
Lead	SW6010B	5/18/2004	0.369	1	0.36	200	mg/Kg
Mercury	SW7471A	5/18/2004	0.1	1	0.080	0.41	mg/Kg
Molybdenum	SW6010B	5/18/2004	0.245	1	0.24	ND	mg/Kg
Nickel	SW6010B	5/18/2004	0.199	1	0.20	45	mg/Kg
Selenium	SW6010B	5/18/2004	0.781	1	0.77	ND	mg/Kg
Silver	SW6010B	5/18/2004	0.287	1	0.28	ND	mg/Kg
Thallium	SW6010B	5/18/2004	2.666	1	2.6	ND	mg/Kg
Vanadium	SW6010B	5/18/2004	0.793	1	0.78	39	mg/Kg
Zinc	SW6010B	5/18/2004	2.073	1	2.0	240	mg/Kg

Certified Analytical Report of Metals Followed by TCLP

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp.of EB-2-2.5,5,7.5,10 **Lab Sample ID:** 0405083-014A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/20/2004

Sample Matrix: SOIL

Date/Time Sampled 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Lead	SW6010B	5/20/2004	0.05	1	0.050	0.43	mg/L

<u>Certified Analytical Report of</u> <u>Metals Followed by WET extraction (STLC)</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp.of EB-2-2.5,5,7.5,10 **Lab Sample ID:** 0405083-014A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/20/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Lead	SW6010B	5/20/2004	0.05	10	0.500	7.30	mg/L

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp. of EB-2-2.5,5,7.5,10 Lab Sample ID: 0405083-014A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/24/2004-5/25/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/25/2004	8	5	40.0	ND	mg/Kg
TPH (Gasoline)	SW8015B	5/25/2004	0.1	1	0.100	0.460	mg/Kg
TPH (Oil)	SW8015B	5/25/2004	4	5	20.0	411	mg/Kg
Surr: Pentacosane	SW8015B	5/25/2004	0	5	50-150	87.7	%REC
Surr: Trifluorotoluene	SW8015B	5/25/2004	0	1	65-135	29.1	%REC

Note: Reporting limits increased due to high level of heavy hydrocarbons.

Note: Gasoline chromatographic response does not resemble a typical fuel pattern. Surrogate outside the control limit due to possible matrix interference.

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp.of EB-2-2.5,5,7.5,10 Lab Sample ID: 0405083-014A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/20/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
1,1,1,2-Tetrachloroethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,1,1-Trichloroethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,1,2,2-Tetrachloroethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,1,2-Trichloroethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,1-Dichloroethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,1-Dichloroethene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,1-Dichloropropene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2,3-Trichlorobenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2,3-Trichloropropane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2,4-Trichlorobenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2,4-Trimethylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2-Dibromo-3-chloropropane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2-Dibromoethane (EDB)	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2-Dichlorobenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2-Dichloroethane (EDC)	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,2-Dichloropropane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,3,5-Trimethylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,3-Dichlorobenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,3-Dichloropropane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
1,4-Dichlorobenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
2,2-Dichloropropane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
2-Chloroethyl vinyl ether	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
2-Chlorotoluene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
4-Chlorotoluene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
4-Isopropyltoluene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Benzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Bromobenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Bromochloromethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Bromodichloromethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Bromoform	SW8260B	5/20/2004	10	1	10	ND	μg/Kg

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp.of EB-2-2.5,5,7.5,10 Lab Sample ID: 0405083-014A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/20/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Carbon tetrachloride	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Chlorobenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Chloroform	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Chloromethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
cis-1,2-Dichloroethene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Dibromochloromethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Dibromomethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Dichlorodifluoromethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Ethyl tert-butyl ether (ETBE)	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Ethylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Freon-113	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Hexachlorobutadiene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Isopropyl ether (IPE)	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Isopropylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Methyl tert-butyl ether (MTBE)	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Methylene chloride	SW8260B	5/20/2004	50	1	50	ND	μg/Kg
Naphthalene	SW8260B	5/20/2004	20	1	20	ND	μg/Kg
n-Butylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
n-Propylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
sec-Butylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Styrene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
t-Butyl alcohol (t-Butanol)	SW8260B	5/20/2004	50	1	50	ND	μg/Kg
tert-Amyl methyl ether (TAME)	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
tert-Butylbenzene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Tetrachloroethene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Toluene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
trans-1,2-Dichloroethene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
trans-1,3-Dichloropropene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Trichloroethene	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Trichlorofluoromethane	SW8260B	5/20/2004	10	1	10	ND	μg/Kg

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp.of EB-2-2.5,5,7.5,10 Lab Sample ID: 0405083-014A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/20/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Vinyl chloride	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Xylenes, Total	SW8260B	5/20/2004	10	1	10	ND	μg/Kg
Surr: 4-Bromofluorobenzene	SW8260B	5/20/2004	0	1	65-135	116	%REC
Surr: Dibromofluoromethane	SW8260B	5/20/2004	0	1	65-135	78.9	%REC
Surr: Toluene-d8	SW8260B	5/20/2004	0	1	65-135	12.1	%REC

Note: Surrogate outside the control limit due to possible matrix interference.

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp. of EB-2-2.5,5,7.5,10 Lab Sample ID: 0405083-014A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/19/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis	Date	RL	Dilution	MRL	Result	Units
	Method	Analyzed		Factor			
1,2,4-Trichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,2-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,3-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
1,4-Dichlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4,5-Trichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4,6-Trichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dichlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dimethylphenol	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
2,4-Dinitrophenol	SW8270C	5/22/2004	1.7	1	1.7	ND	mg/Kg
2,4-Dinitrotoluene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2,6-Dinitrotoluene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Chloronaphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Chlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Methylnaphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
2-Nitrophenol	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
3,3'-Dichlorobenzidine	SW8270C	5/22/2004	1.7	1	1.7	ND	mg/Kg
3-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
3-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4,6-Dinitro-2-methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Bromophenyl phenyl ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chloro-3-methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chloroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Chlorophenyl phenyl ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Methylphenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Nitroaniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
4-Nitrophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthylene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Acenaphiniyiene	3002/00	3/22/2004	0.33	ı	0.33	טאו	П

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp. of EB-2-2.5,5,7.5,10 Lab Sample ID: 0405083-014A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/19/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Aniline	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benz(a)anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzidine	SW8270C	5/22/2004	3.3	1	3.3	ND	mg/Kg
Benzo(a)pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(b)fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(g,h,i)perylene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzo(k)fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Benzoic acid	SW8270C	5/22/2004	6.66	1	6.7	ND	mg/Kg
Benzyl alcohol	SW8270C	5/22/2004	6.66	1	6.7	ND	mg/Kg
Bis(2-chloroethoxy)methane	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroethyl)ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroisopropyl)ether	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-ethylhexyl)phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Butyl benzyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Chrysene	SW8270C	5/22/2004	0.66	1	0.66	ND	mg/Kg
Dibenz(a,h)anthracene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Dibenzofuran	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Diethyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Dimethyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Di-n-butyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Di-n-octyl phthalate	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Fluoranthene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Fluorene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobutadiene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorocyclopentadiene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Hexachloroethane	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Indeno(1,2,3-cd)pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Isophorone	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

<u>Certified Analytical Report of</u> <u>SemiVolatile Organics By GC/MS</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Date Prepared: 5/19/2004

Client Sample ID: Comp. of EB-2-2.5,5,7.5,10 Lab Sample ID: 0405083-014A

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL
Date/Time Sampled 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Naphthalene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Nitrobenzene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodimethylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodi-n-propylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodiphenylamine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Pentachlorophenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Phenanthrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Phenol	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Pyrene	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Pyridine	SW8270C	5/22/2004	0.33	1	0.33	ND	mg/Kg
Surr: 2,4,6-Tribromophenol	SW8270C	5/22/2004	0	1	19-122	27.4	%REC
Surr: 2-Fluorobiphenyl	SW8270C	5/22/2004	0	1	24-90	11.6	%REC
Surr: 2-Fluorophenol	SW8270C	5/22/2004	0	1	25-121	24.9	%REC
Surr: Nitrobenzene-d5	SW8270C	5/22/2004	0	1	17-96	9.07	%REC
Surr: Phenol-d6	SW8270C	5/22/2004	0	1	16-91	29.0	%REC
Surr: p-Terphenyl-d14	SW8270C	5/22/2004	0	1	49-138	27.8	%REC

Note: Surrogate recoveries fall outside control range due to possible matrix interference.

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp.of EB-2-2.5,5,7.5,10 Lab Sample ID: 0405083-014A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/20/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Antimony	SW6010B	5/21/2004	1.419	1	1.4	ND	mg/Kg
Arsenic	SW6010B	5/21/2004	1.747	1	1.7	ND	mg/Kg
Barium	SW6010B	5/21/2004	1.329	1	1.3	48	mg/Kg
Beryllium	SW6010B	5/21/2004	0.84	1	0.82	ND	mg/Kg
Cadmium	SW6010B	5/21/2004	0.251	1	0.24	1.9	mg/Kg
Chromium	SW6010B	5/21/2004	0.218	1	0.21	38	mg/Kg
Cobalt	SW6010B	5/21/2004	0.182	1	0.18	5.7	mg/Kg
Copper	SW6010B	5/21/2004	0.242	1	0.23	140	mg/Kg
Lead	SW6010B	5/21/2004	0.369	1	0.36	170	mg/Kg
Mercury	SW7471A	5/21/2004	0.1	1	0.076	1.0	mg/Kg
Molybdenum	SW6010B	5/21/2004	0.245	1	0.24	ND	mg/Kg
Nickel	SW6010B	5/21/2004	0.199	1	0.19	33	mg/Kg
Selenium	SW6010B	5/21/2004	0.781	1	0.76	ND	mg/Kg
Silver	SW6010B	5/21/2004	0.287	1	0.28	1.2	mg/Kg
Thallium	SW6010B	5/21/2004	2.666	1	2.6	ND	mg/Kg
Vanadium	SW6010B	5/21/2004	0.793	1	0.77	39	mg/Kg
Zinc	SW6010B	5/21/2004	2.073	1	2.0	150	mg/Kg

Certified Analytical Report of Metals Followed by TCLP

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp.of EB-3-2.5,5,7.5,10 **Lab Sample ID:** 0405083-015A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/20/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Lead	SW6010B	5/20/2004	0.05	1	0.050	0.21	mg/L

<u>Certified Analytical Report of</u> <u>Metals Followed by WET extraction (STLC)</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp. of EB-3-2.5,5,7.5,10 **Lab Sample ID:** 0405083-015A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/20/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Lead	SW6010B	5/20/2004	0.05	10	0.500	6.70	mg/L

<u>Certified Analytical Report of</u> <u>Petroleum Hydrocarbons</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp. of EB-3-2.5,5,7.5,10 Lab Sample ID: 0405083-015A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/17/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
TPH (Diesel)	SW8015B	5/18/2004	4	5	20.0	ND	mg/Kg
TPH (Gasoline)	SW8015B	5/18/2004	0.1	1	0.100	1.26	mg/Kg
TPH (Oil)	SW8015B	5/18/2004	4	5	20.0	313	mg/Kg
Surr: Pentacosane	SW8015B	5/18/2004	0	5	50-150	141	%REC
Surr: Trifluorotoluene	SW8015B	5/18/2004	0	1	65-135	87.0	%REC

Note: Diesel reporting limit increased due to presence of heavier hydrocarbons.

Note: Gasoline chromatographic response does not resemble a typical fuel pattern.

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp.of EB-3-2.5,5,7.5,10 Lab Sample ID: 0405083-015A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/17/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
1,1,1,2-Tetrachloroethane	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
1,1,1-Trichloroethane	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
1,1,2,2-Tetrachloroethane	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
1,1,2-Trichloroethane	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
1,1-Dichloroethane	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
1,1-Dichloroethene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
1,1-Dichloropropene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
1,2,3-Trichlorobenzene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
1,2,3-Trichloropropane	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
1,2,4-Trichlorobenzene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
1,2,4-Trimethylbenzene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
1,2-Dibromo-3-chloropropane	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
1,2-Dibromoethane (EDB)	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
1,2-Dichlorobenzene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
1,2-Dichloroethane (EDC)	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
1,2-Dichloropropane	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
1,3,5-Trimethylbenzene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
1,3-Dichlorobenzene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
1,3-Dichloropropane	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
1,4-Dichlorobenzene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
2,2-Dichloropropane	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
2-Chloroethyl vinyl ether	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
2-Chlorotoluene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
4-Chlorotoluene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
4-Isopropyltoluene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Benzene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Bromobenzene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Bromochloromethane	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Bromodichloromethane	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Bromoform	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp. of EB-3-2.5,5,7.5,10 Lab Sample ID: 0405083-015A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/17/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Carbon tetrachloride Chlorobenzene Chloroform Chloromethane cis-1,2-Dichloroethene	SW8260B SW8260B SW8260B	Analyzed 5/18/2004	40	Factor			
Chlorobenzene Chloroform Chloromethane	SW8260B		40				
Chloroform Chloromethane			10	33.33	330	ND	μg/Kg
Chloromethane	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
	01102000	5/18/2004	10	33.33	330	ND	μg/Kg
cis-1,2-Dichloroethene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Dibromochloromethane	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Dibromomethane	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Dichlorodifluoromethane	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Ethyl tert-butyl ether (ETBE)	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Ethylbenzene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Freon-113	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Hexachlorobutadiene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Isopropyl ether (IPE)	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Isopropylbenzene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Methyl tert-butyl ether (MTBE)	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Methylene chloride	SW8260B	5/18/2004	50	33.33	1700	ND	μg/Kg
Naphthalene	SW8260B	5/18/2004	20	33.33	670	ND	μg/Kg
n-Butylbenzene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
n-Propylbenzene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
sec-Butylbenzene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Styrene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
t-Butyl alcohol (t-Butanol)	SW8260B	5/18/2004	50	33.33	1700	ND	μg/Kg
tert-Amyl methyl ether (TAME)	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
tert-Butylbenzene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Tetrachloroethene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Toluene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
trans-1,2-Dichloroethene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
trans-1,3-Dichloropropene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Trichloroethene	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Trichlorofluoromethane	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-015A

Date Prepared: 5/17/2004

Client Sample ID: Comp.of EB-3-2.5,5,7.5,10

Sample Location: 4th St.Bridge AWS5

Sample Matrix: SOIL
Date/Time Sampled 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Vinyl chloride	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Xylenes, Total	SW8260B	5/18/2004	10	33.33	330	ND	μg/Kg
Surr: 4-Bromofluorobenzene	SW8260B	5/18/2004	0	33.33	65-135	94.7	%REC
Surr: Dibromofluoromethane	SW8260B	5/18/2004	0	33.33	65-135	105	%REC
Surr: Toluene-d8	SW8260B	5/18/2004	0	33.33	65-135	109	%REC

Note: Sample was diluted due to matrix interference.

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp. of EB-3-2.5,5,7.5,10 Lab Sample ID: 0405083-015A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/17/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
	Witthou	Maryzeu		ractor			
1,2,4-Trichlorobenzene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
1,2-Dichlorobenzene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
1,3-Dichlorobenzene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
1,4-Dichlorobenzene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2,4,5-Trichlorophenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2,4,6-Trichlorophenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dichlorophenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2,4-Dimethylphenol	SW8270C	5/17/2004	0.66	1	0.66	ND	mg/Kg
2,4-Dinitrophenol	SW8270C	5/17/2004	1.7	1	1.7	ND	mg/Kg
2,4-Dinitrotoluene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2,6-Dinitrotoluene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2-Chloronaphthalene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2-Chlorophenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2-Methylnaphthalene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2-Methylphenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2-Nitroaniline	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
2-Nitrophenol	SW8270C	5/17/2004	0.66	1	0.66	ND	mg/Kg
3,3´-Dichlorobenzidine	SW8270C	5/17/2004	1.7	1	1.7	ND	mg/Kg
3-Methylphenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
3-Nitroaniline	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
4,6-Dinitro-2-methylphenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
4-Bromophenyl phenyl ether	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
4-Chloro-3-methylphenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
4-Chloroaniline	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
4-Chlorophenyl phenyl ether	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
4-Methylphenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
4-Nitroaniline	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
4-Nitrophenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Acenaphthylene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

<u>Certified Analytical Report of</u> SemiVolatile Organics By GC/MS

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp.of EB-3-2.5,5,7.5,10 Lab Sample ID: 0405083-015A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/17/2004

Sample Matrix: SOIL **Date/Time Sampled** 5/14/2004

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Aniline	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Anthracene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Benz(a)anthracene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Benzidine	SW8270C	5/17/2004	3.3	1	3.3	ND	mg/Kg
Benzo(a)pyrene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Benzo(b)fluoranthene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Benzo(g,h,i)perylene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Benzo(k)fluoranthene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Benzoic acid	SW8270C	5/17/2004	6.66	1	6.7	ND	mg/Kg
Benzyl alcohol	SW8270C	5/17/2004	6.66	1	6.7	ND	mg/Kg
Bis(2-chloroethoxy)methane	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroethyl)ether	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-chloroisopropyl)ether	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Bis(2-ethylhexyl)phthalate	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Butyl benzyl phthalate	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Chrysene	SW8270C	5/17/2004	0.66	1	0.66	ND	mg/Kg
Dibenz(a,h)anthracene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Dibenzofuran	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Diethyl phthalate	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Dimethyl phthalate	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Di-n-butyl phthalate	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Di-n-octyl phthalate	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Fluoranthene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Fluorene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobenzene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorobutadiene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Hexachlorocyclopentadiene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Hexachloroethane	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Indeno(1,2,3-cd)pyrene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Isophorone	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

<u>Certified Analytical Report of</u> <u>SemiVolatile Organics By GC/MS</u>

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Lab Sample ID: 0405083-015A

Date Prepared: 5/17/2004

Client Sample ID: Comp.of EB-3-2.5,5,7.5,10

Sample Location: 4th St.Bridge AWS5

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units
Naphthalene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Nitrobenzene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodimethylamine	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodi-n-propylamine	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
N-Nitrosodiphenylamine	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Pentachlorophenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Phenanthrene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Phenol	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Pyrene	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Pyridine	SW8270C	5/17/2004	0.33	1	0.33	ND	mg/Kg
Surr: 2,4,6-Tribromophenol	SW8270C	5/17/2004	0	1	19-122	59.7	%REC
Surr: 2-Fluorobiphenyl	SW8270C	5/17/2004	0	1	24-90	58.6	%REC
Surr: 2-Fluorophenol	SW8270C	5/17/2004	0	1	25-121	61.8	%REC
Surr: Nitrobenzene-d5	SW8270C	5/17/2004	0	1	17-96	53.9	%REC
Surr: Phenol-d6	SW8270C	5/17/2004	0	1	16-91	55.1	%REC
Surr: p-Terphenyl-d14	SW8270C	5/17/2004	0	1	49-138	77.6	%REC

Certified Analytical Report of Total Metals

Report prepared for: Peter Cusack **Date Received:** 5/17/2004

Treadwell & Rollo Date Reported: 5/28/2004

Client Sample ID: Comp. of EB-3-2.5,5,7.5,10 Lab Sample ID: 0405083-015A

Sample Location: 4th St.Bridge AWS5 Date Prepared: 5/17/2004-5/18/2004

Parameters	Analysis	Date	RL	Dilution	MRL	Result	Units
	Method	Analyzed		Factor			
Antimony	SW6010B	5/18/2004	1.419	1	1.4	ND	mg/Kg
Arsenic	SW6010B	5/18/2004	1.747	1	1.7	ND	mg/Kg
Barium	SW6010B	5/18/2004	1.329	1	1.3	410	mg/Kg
Beryllium	SW6010B	5/18/2004	0.84	1	0.84	ND	mg/Kg
Cadmium	SW6010B	5/18/2004	0.251	1	0.25	1.7	mg/Kg
Chromium	SW6010B	5/18/2004	0.218	1	0.22	33	mg/Kg
Cobalt	SW6010B	5/18/2004	0.182	1	0.18	5.8	mg/Kg
Copper	SW6010B	5/18/2004	0.242	1	0.24	58	mg/Kg
Lead	SW6010B	5/18/2004	0.369	1	0.37	120	mg/Kg
Mercury	SW7471A	5/18/2004	0.1	1	0.082	0.95	mg/Kg
Molybdenum	SW6010B	5/18/2004	0.245	1	0.24	ND	mg/Kg
Nickel	SW6010B	5/18/2004	0.199	1	0.20	33	mg/Kg
Selenium	SW6010B	5/18/2004	0.781	1	0.78	ND	mg/Kg
Silver	SW6010B	5/18/2004	0.287	1	0.29	ND	mg/Kg
Thallium	SW6010B	5/18/2004	2.666	1	2.7	ND	mg/Kg
Vanadium	SW6010B	5/18/2004	0.793	1	0.79	31	mg/Kg
Zinc	SW6010B	5/18/2004	2.073	1	2.1	170	mg/Kg

Definitions, legends and Notes

Note	Description
ug/kg	Microgram per kilogram (ppb, part per billion).
ug/L	Microgram per liter (ppb, part per billion).
mg/kg	Milligram per kilogram (ppm, part per million).
mg/L	Milligram per liter (ppm, part per million).
LCS/LCSD	Laboratory control sample/laboratory control sample duplicate.
MDL	Method detection limit.
MRL	Modified reporting limit. When sample is subject to dilution, reporting limit times dilution factor yields MRL.
MS/MSD	Matrix spike/matrix spike duplicate.
N/A	Not applicable.
ND	Not detected at or above detection limit.
NR	Not reported.
QC	Quality Control.
RL	Reporting limit.
% RPD	Percent relative difference.
а	pH was measured immediately upon the receipt of the sample, but it was still done outside the holding time.
sub	Analyzed by subcontracting laboratory, Lab Certificate #

Torrent Laboratory, Inc. **Date:** 03-Jun-04

CLIENT: Treadwell & Rollo

Work Order: 0405081

TestCode: 200.7 **Project:**

Sample ID MB-766	SampType: MBLK	TestCode: 200.7	Units: mg/L	Prep Date: 5/21/2004	Run ID: ICP_040522A
Client ID: ZZZZZ	Batch ID: 766	TestNo: E200.7	(E200.7)	Analysis Date: 5/22/2004	SeqNo: 50495
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Antimony	ND	0.010			
Arsenic	ND	0.040			
Barium	ND	0.020			
Beryllium	ND	0.010			
Cadmium	ND	0.010			
Chromium	ND	0.010			
Cobalt	ND	0.010			
Copper	ND	0.010			
Lead	ND	0.050			
Molybdenum	ND	0.010			
Nickel	ND	0.030			
Selenium	ND	0.020			
Silver	ND	0.010			
Thallium	ND	0.050			
Vanadium	ND	0.010			
Zinc	ND	0.030			

Sample ID LCS-766	SampType: LCS	TestCoo	de: 200.7	Units: mg/L		Prep Dat	e: 5/21/20	04	Run ID: ICI	P_040522A	
Client ID: ZZZZZ	Batch ID: 766	TestN	lo: E200.7	(E200.7)		Analysis Dat	e: 5/22/20	04	SeqNo: 50	493	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	1.093	0.010	1	0	109	80	120	0	0		
Arsenic	1.126	0.040	1	0	113	80	120	0	0		
Barium	2.058	0.020	2	0	103	80	120	0	0		
Beryllium	1.117	0.010	1	0	112	80	120	0	0		
Cadmium	1.148	0.010	1	0	115	80	120	0	0		
Chromium	0.9936	0.010	1	0	99.4	80	120	0	0		
Cobalt	1.103	0.010	1	0	110	80	120	0	0		
Copper	1.117	0.010	1	0	112	80	120	0	0		
Lead	1.086	0.050	1	0	109	80	120	0	0		

Qualifiers:

ND - Not Detected at the Reporting Limit

ANALYTICAL QC SUMMARY REPORT

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order: 0405081

Project:

Sample ID L	_CS-766	SampType:	LCS	TestCoo	le: 200.7	Units: mg/L	_	Prep Date	e: 5/21/2 0	004	Run ID: ICI	P_040522A	_
Client ID: Z	2777	Batch ID:	766	TestN	lo: E200.7	(E200.7)		Analysis Date	e: 5/22/2 0	004	SeqNo: 504	493	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Molybdenum			1.066	0.010	1	0	107	80	120	0	0		
Nickel			1.111	0.030	1	0	111	80	120	0	0		
Selenium			1.067	0.020	1	0	107	80	120	0	0		
Silver			1.05	0.010	1	0	105	80	120	0	0		
Thallium			1.079	0.050	1	0	108	80	120	0	0		
Vanadium			1.135	0.010	1	0	114	80	120	0	0		
Zinc			1.107	0.030	1	0	111	80	120	0	0		
Sample ID L	_CSD-766	SampType:	LCSD	TestCoo	le: 200.7	Units: mg/L		Prep Date	e: 5/21/2 0	004	Run ID: ICI	P_040522A	
Client ID: Z	ZZZZ	Batch ID:	766	TestN	lo: E200.7	(E200.7)		Analysis Date	e: 5/22/2 0	004	SeqNo: 504	494	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony			1.034	0.010	1	0	103	80	120	1.093	5.58	30	
Arsenic			1.126	0.040	1	0	113	80	120	1.126	0.0360	30	
Barium			2.073	0.020	2	0	104	80	120	2.058	0.687	30	
Beryllium			1.119	0.010	1	0	112	80	120	1.117	0.177	30	
Cadmium			1.14	0.010	1	0	114	80	120	1.148	0.685	30	
Chromium			0.9951	0.010	1	0	99.5	80	120	0.9936	0.153	30	
Cobalt			1.105	0.010	1	0	111	80	120	1.103	0.160	30	
Copper			1.096	0.010	1	0	110	80	120	1.117	1.88	30	
Lead			1.086	0.050	1	0	109	80	120	1.086	0.0474	30	
Molybdenum			1.067	0.010	1	0	107	80	120	1.066	0.0851	30	
Nickel			1.113	0.030	1	0	111	80	120	1.111	0.213	30	
Selenium			1.024	0.020	1	0	102	80	120	1.067	4.10	30	
Silver			1.051	0.010	1	0	105	80	120	1.05	0.157	30	
Thallium			1.079	0.050	1	0	108	80	120	1.079	0.0527	30	
Vanadium			1.121	0.010	1	0	112	80	120	1.135	1.32	30	
Zinc			1.1	0.030	1	0	110	80	120	1.107	0.579	30	

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.7

Work Order: 0405081

ANALYTICAL QC SUMMARY REPORT

Project: TestCode: 200.7

SampType: MS	TestCod	de: 200.7	Units: mg/L		Prep Date	e: 5/21/20 0	04	Run ID: ICI	P_040522A	
Batch ID: 766	TestN	No: E200.7	(E200.7)		Analysis Date	e: 5/22/20 0	04	SeqNo: 504	472	
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1.042	0.010	1	0	104	80	120	0	0		
1.191	0.040	1	0	119	80	120	0	0		
1.926	0.020	2	0.04209	94.2	80	120	0	0		
1.117	0.010	1	0	112	80	120	0	0		
1.094	0.010	1	0	109	80	120	0	0		
0.9493	0.010	1	0	94.9	80	120	0	0		
1.072	0.010	1	0	107	80	120	0	0		
1.088	0.010	1	0	109	80	120	0	0		
1.053	0.050	1	0	105	80	120	0	0		
1.057	0.010	1	0	106	80	120	0	0		
1.07	0.030	1	0	107	80	120	0	0		
1.105	0.020	1	0	110	80	120	0	0		
1.014	0.010	1	0	101	80	120	0	0		
1.087	0.050	1	0	109	80	120	0	0		
1.102	0.010	1	0	110	80	120	0	0		
1.078	0.030	1	0	108	80	120	0	0		
SampType: MS	TestCod	de: 200.7	Units: mg/L		Prep Date	e: 5/21/20 0	04	Run ID: ICI	2_040522A	
Batch ID: 766	TestN	No: E200.7	(E200.7)		Analysis Date	e: 5/22/20 0	04	SeqNo: 504	487	
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1.137	0.010	1	0	114	80	120	0	0		
2.097	0.020	2	0.08642	101	80	120	0	0		
1.051	0.010	1	0	105	80	120	0	0		
1.191	0.010	1	0	119	80	120	0	0		
1.006	0.010	1	0	101	80	120	0	0		
1.084	0.010	1	0	108	80	120	0	0		
1.141	0.010	1	0	114	80	120	0	0		
1.114	0.050	1	0	111	80	120	0	0		
1.12	0.010	1	0.01725	110	80	120	0	0		
	0.030		0	113	80	120	0			
	Batch ID: 766 Result 1.042 1.191 1.926 1.117 1.094 0.9493 1.072 1.088 1.053 1.057 1.07 1.105 1.014 1.087 1.102 1.078 SampType: MS Batch ID: 766 Result 1.137 2.097 1.051 1.191 1.006 1.084 1.141 1.114	Result PQL 1.042 0.010 1.191 0.040 1.926 0.020 1.117 0.010 1.094 0.010 0.9493 0.010 1.072 0.010 1.088 0.010 1.053 0.050 1.057 0.010 1.07 0.030 1.105 0.020 1.105 0.020 1.014 0.010 1.087 0.050 1.102 0.010 1.078 0.030 SampType: MS TestCod Batch ID: 766 TestN Result PQL 1.137 0.010 2.097 0.020 1.051 0.010 1.094 0.010 1.094 0.010 1.094 0.010 1.094 0.010 1.094 0.010 1.094 0.010 1.094 0.010 1.094 0.010 1.094 0.010 1.094 0.010 1.094 0.010 1.094 0.010 1.094 0.010 1.094 0.010 1.095 0.050	Batch ID: 766 TestNo: E200.7 Result PQL SPK value 1.042 0.010 1 1.191 0.040 1 1.926 0.020 2 1.117 0.010 1 1.094 0.010 1 0.9493 0.010 1 1.072 0.010 1 1.088 0.010 1 1.053 0.050 1 1.057 0.010 1 1.07 0.030 1 1.057 0.010 1 1.078 0.020 1 1.014 0.010 1 1.087 0.050 1 1.078 0.030 1 SampType: MS TestCode: 200.7 Batch ID: 766 TestNo: E200.7 Result PQL SPK value 1.137 0.010 1 2.097 0.020 2 1.051 0.010 1 <t< td=""><td>Batch ID: 766 TestNo. E200.7 (E200.7) Result PQL SPK value SPK Ref Val 1.042 0.010 1 0 1.191 0.040 1 0 1.926 0.020 2 0.04209 1.117 0.010 1 0 1.094 0.010 1 0 0.9493 0.010 1 0 1.072 0.010 1 0 1.072 0.010 1 0 1.088 0.010 1 0 1.053 0.050 1 0 1.057 0.010 1 0 1.07 0.030 1 0 1.07 0.030 1 0 1.087 0.050 1 0 1.087 0.050 1 0 1.078 0.030 1 0 1.078 0.030 1 0 1.078 <t< td=""><td>Batch ID: 766 TestNo: E200.7 (E200.7) Result PQL SPK value SPK Ref Val %REC 1.042 0.010 1 0 104 1.191 0.040 1 0 119 1.926 0.020 2 0.04209 94.2 1.117 0.010 1 0 109 0.9493 0.010 1 0 109 0.9493 0.010 1 0 107 1.088 0.010 1 0 107 1.088 0.010 1 0 109 1.057 0.010 1 0 105 1.057 0.010 1 0 107 1.105 0.020 1 0 107 1.105 0.020 1 0 101 1.087 0.050 1 0 101 1.087 0.050 1 0 108 1.102 0.01</td><td>Batch ID: 766 TestNo: E200.7 (E200.7) Analysis Date Result PQL SPK value SPK Ref Val %REC LowLimit 1.042 0.010 1 0 104 80 1.191 0.040 1 0 119 80 1.926 0.020 2 0.04209 94.2 80 1.117 0.010 1 0 112 80 1.094 0.010 1 0 109 80 0.9493 0.010 1 0 107 80 1.072 0.010 1 0 109 80 1.088 0.010 1 0 109 80 1.053 0.050 1 0 105 80 1.057 0.010 1 0 106 80 1.077 0.030 1 0 107 80 1.087 0.020 1 0 101 8</td><td>Batch ID: 766 TestNo: E200.7 (E200.7) Analysis Date: 5/22/20 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit 1.042 0.010 1 0 104 80 120 1.191 0.040 1 0 119 80 120 1.926 0.020 2 0.04209 94.2 80 120 1.117 0.010 1 0 119 80 120 1.094 0.010 1 0 109 80 120 0.9493 0.010 1 0 107 80 120 1.072 0.010 1 0 107 80 120 1.088 0.010 1 0 107 80 120 1.057 0.010 1 0 106 80 120 1.07 0.030 1 0 107 80 120 1.087</td><td>Batch ID: 766 TestIV: E200.7 (E200.7) Analysis Date: 5/22/20ta Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val 1.042 0.010 1 0 104 80 120 0 1.191 0.040 1 0 119 80 120 0 1.926 0.020 2 0.04209 94.2 80 120 0 1.117 0.010 1 0 112 80 120 0 1.094 0.010 1 0 109 80 120 0 0.9493 0.010 1 0 107 80 120 0 1.072 0.010 1 0 107 80 120 0 1.088 0.010 1 0 105 80 120 0 1.057 0.010 1 0 105 80 120</td><td>Batch ID: 766 TestNo. E200.7 (E200.7) Analysis Date: 5/22/20-04 SeqNo: 500 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD 1.042 0.010 1 0 104 80 120 0 0 1.191 0.040 1 0 119 80 120 0 0 1.926 0.020 2 0.04209 94.2 80 120 0 0 1.117 0.010 1 0 119 80 120 0 0 0.9493 0.010 1 0 109 80 120 0 0 1.072 0.010 1 0 109 80 120 0 0 1.072 0.010 1 0 109 80 120 0 0 1.083 0.050 1 0 106</td><td>Batch ID: 766 TestNo: E201. SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit 1.042 0.010 1 0 104 80 120 0 0 - 1.191 0.040 1 0 119 80 120 0 0 - 1.926 0.020 2 0.04209 94.2 80 120 0 0 - 1.094 0.010 1 0 112 80 120 0 0 - 1.094 0.010 1 0 109 80 120 0 0 - 1.094 0.010 1 0 109 80 120 0 0 0 - 1.094 0.010 1 0 109 80 120 0 0 - - - - - - - - -</td></t<></td></t<>	Batch ID: 766 TestNo. E200.7 (E200.7) Result PQL SPK value SPK Ref Val 1.042 0.010 1 0 1.191 0.040 1 0 1.926 0.020 2 0.04209 1.117 0.010 1 0 1.094 0.010 1 0 0.9493 0.010 1 0 1.072 0.010 1 0 1.072 0.010 1 0 1.088 0.010 1 0 1.053 0.050 1 0 1.057 0.010 1 0 1.07 0.030 1 0 1.07 0.030 1 0 1.087 0.050 1 0 1.087 0.050 1 0 1.078 0.030 1 0 1.078 0.030 1 0 1.078 <t< td=""><td>Batch ID: 766 TestNo: E200.7 (E200.7) Result PQL SPK value SPK Ref Val %REC 1.042 0.010 1 0 104 1.191 0.040 1 0 119 1.926 0.020 2 0.04209 94.2 1.117 0.010 1 0 109 0.9493 0.010 1 0 109 0.9493 0.010 1 0 107 1.088 0.010 1 0 107 1.088 0.010 1 0 109 1.057 0.010 1 0 105 1.057 0.010 1 0 107 1.105 0.020 1 0 107 1.105 0.020 1 0 101 1.087 0.050 1 0 101 1.087 0.050 1 0 108 1.102 0.01</td><td>Batch ID: 766 TestNo: E200.7 (E200.7) Analysis Date Result PQL SPK value SPK Ref Val %REC LowLimit 1.042 0.010 1 0 104 80 1.191 0.040 1 0 119 80 1.926 0.020 2 0.04209 94.2 80 1.117 0.010 1 0 112 80 1.094 0.010 1 0 109 80 0.9493 0.010 1 0 107 80 1.072 0.010 1 0 109 80 1.088 0.010 1 0 109 80 1.053 0.050 1 0 105 80 1.057 0.010 1 0 106 80 1.077 0.030 1 0 107 80 1.087 0.020 1 0 101 8</td><td>Batch ID: 766 TestNo: E200.7 (E200.7) Analysis Date: 5/22/20 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit 1.042 0.010 1 0 104 80 120 1.191 0.040 1 0 119 80 120 1.926 0.020 2 0.04209 94.2 80 120 1.117 0.010 1 0 119 80 120 1.094 0.010 1 0 109 80 120 0.9493 0.010 1 0 107 80 120 1.072 0.010 1 0 107 80 120 1.088 0.010 1 0 107 80 120 1.057 0.010 1 0 106 80 120 1.07 0.030 1 0 107 80 120 1.087</td><td>Batch ID: 766 TestIV: E200.7 (E200.7) Analysis Date: 5/22/20ta Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val 1.042 0.010 1 0 104 80 120 0 1.191 0.040 1 0 119 80 120 0 1.926 0.020 2 0.04209 94.2 80 120 0 1.117 0.010 1 0 112 80 120 0 1.094 0.010 1 0 109 80 120 0 0.9493 0.010 1 0 107 80 120 0 1.072 0.010 1 0 107 80 120 0 1.088 0.010 1 0 105 80 120 0 1.057 0.010 1 0 105 80 120</td><td>Batch ID: 766 TestNo. E200.7 (E200.7) Analysis Date: 5/22/20-04 SeqNo: 500 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD 1.042 0.010 1 0 104 80 120 0 0 1.191 0.040 1 0 119 80 120 0 0 1.926 0.020 2 0.04209 94.2 80 120 0 0 1.117 0.010 1 0 119 80 120 0 0 0.9493 0.010 1 0 109 80 120 0 0 1.072 0.010 1 0 109 80 120 0 0 1.072 0.010 1 0 109 80 120 0 0 1.083 0.050 1 0 106</td><td>Batch ID: 766 TestNo: E201. SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit 1.042 0.010 1 0 104 80 120 0 0 - 1.191 0.040 1 0 119 80 120 0 0 - 1.926 0.020 2 0.04209 94.2 80 120 0 0 - 1.094 0.010 1 0 112 80 120 0 0 - 1.094 0.010 1 0 109 80 120 0 0 - 1.094 0.010 1 0 109 80 120 0 0 0 - 1.094 0.010 1 0 109 80 120 0 0 - - - - - - - - -</td></t<>	Batch ID: 766 TestNo: E200.7 (E200.7) Result PQL SPK value SPK Ref Val %REC 1.042 0.010 1 0 104 1.191 0.040 1 0 119 1.926 0.020 2 0.04209 94.2 1.117 0.010 1 0 109 0.9493 0.010 1 0 109 0.9493 0.010 1 0 107 1.088 0.010 1 0 107 1.088 0.010 1 0 109 1.057 0.010 1 0 105 1.057 0.010 1 0 107 1.105 0.020 1 0 107 1.105 0.020 1 0 101 1.087 0.050 1 0 101 1.087 0.050 1 0 108 1.102 0.01	Batch ID: 766 TestNo: E200.7 (E200.7) Analysis Date Result PQL SPK value SPK Ref Val %REC LowLimit 1.042 0.010 1 0 104 80 1.191 0.040 1 0 119 80 1.926 0.020 2 0.04209 94.2 80 1.117 0.010 1 0 112 80 1.094 0.010 1 0 109 80 0.9493 0.010 1 0 107 80 1.072 0.010 1 0 109 80 1.088 0.010 1 0 109 80 1.053 0.050 1 0 105 80 1.057 0.010 1 0 106 80 1.077 0.030 1 0 107 80 1.087 0.020 1 0 101 8	Batch ID: 766 TestNo: E200.7 (E200.7) Analysis Date: 5/22/20 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit 1.042 0.010 1 0 104 80 120 1.191 0.040 1 0 119 80 120 1.926 0.020 2 0.04209 94.2 80 120 1.117 0.010 1 0 119 80 120 1.094 0.010 1 0 109 80 120 0.9493 0.010 1 0 107 80 120 1.072 0.010 1 0 107 80 120 1.088 0.010 1 0 107 80 120 1.057 0.010 1 0 106 80 120 1.07 0.030 1 0 107 80 120 1.087	Batch ID: 766 TestIV: E200.7 (E200.7) Analysis Date: 5/22/20ta Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val 1.042 0.010 1 0 104 80 120 0 1.191 0.040 1 0 119 80 120 0 1.926 0.020 2 0.04209 94.2 80 120 0 1.117 0.010 1 0 112 80 120 0 1.094 0.010 1 0 109 80 120 0 0.9493 0.010 1 0 107 80 120 0 1.072 0.010 1 0 107 80 120 0 1.088 0.010 1 0 105 80 120 0 1.057 0.010 1 0 105 80 120	Batch ID: 766 TestNo. E200.7 (E200.7) Analysis Date: 5/22/20-04 SeqNo: 500 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD 1.042 0.010 1 0 104 80 120 0 0 1.191 0.040 1 0 119 80 120 0 0 1.926 0.020 2 0.04209 94.2 80 120 0 0 1.117 0.010 1 0 119 80 120 0 0 0.9493 0.010 1 0 109 80 120 0 0 1.072 0.010 1 0 109 80 120 0 0 1.072 0.010 1 0 109 80 120 0 0 1.083 0.050 1 0 106	Batch ID: 766 TestNo: E201. SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit 1.042 0.010 1 0 104 80 120 0 0 - 1.191 0.040 1 0 119 80 120 0 0 - 1.926 0.020 2 0.04209 94.2 80 120 0 0 - 1.094 0.010 1 0 112 80 120 0 0 - 1.094 0.010 1 0 109 80 120 0 0 - 1.094 0.010 1 0 109 80 120 0 0 0 - 1.094 0.010 1 0 109 80 120 0 0 - - - - - - - - -

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.7

Sample ID 0405112-009AMS	SampType: MS	TestCoo	le: 200.7	Units: mg/L		Prep Date	e: 5/21/20	004	Run ID: ICI	P_040522A	
Client ID: ZZZZZ	Batch ID: 766	TestN	lo: E200.7	(E200.7)		Analysis Date	e: 5/22/2 0	004	SeqNo: 50	487	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Selenium	1.033	0.020	1	0	103	80	120	0	0		
Silver	1.049	0.010	1	0	105	80	120	0	0		
Thallium	1.091	0.050	1	0	109	80	120	0	0		
Vanadium	1.138	0.010	1	0	114	80	120	0	0		
Zinc	1.13	0.030	1	0	113	80	120	0	0		
Sample ID 0405097-002AMSD	SampType: MSD	TestCoo	le: 200.7	Units: mg/L		Prep Date	e: 5/21/20	004	Run ID: ICI	P_040522A	
Client ID: ZZZZZ	Batch ID: 766	TestN	lo: E200.7	(E200.7)		Analysis Date	e: 5/22/20	004	SeqNo: 50	473	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	1.098	0.010	1	0	110	80	120	1.042	5.16	30	
Arsenic	1.2	0.040	1	0	120	80	120	1.191	0.704	30	
Barium	1.915	0.020	2	0.04209	93.7	80	120	1.926	0.550	30	
Beryllium	1.122	0.010	1	0	112	80	120	1.117	0.442	30	
Cadmium	1.122	0.010	1	0	112	80	120	1.094	2.56	30	
Chromium	0.9646	0.010	1	0	96.5	80	120	0.9493	1.60	30	
Cobalt	1.069	0.010	1	0	107	80	120	1.072	0.263	30	
Copper	1.119	0.010	1	0	112	80	120	1.088	2.81	30	
Lead	1.061	0.050	1	0	106	80	120	1.053	0.740	30	
Molybdenum	1.079	0.010	1	0	108	80	120	1.057	2.03	30	
Nickel	1.086	0.030	1	0	109	80	120	1.07	1.53	30	
Selenium	1.076	0.020	1	0	108	80	120	1.105	2.69	30	
Silver	1.02	0.010	1	0	102	80	120	1.014	0.655	30	
Thallium	1.082	0.050	1	0	108	80	120	1.087	0.515	30	
Vanadium	1.079	0.010	1	0	108	80	120	1.102	2.13	30	
Zinc	1.096	0.030	1	0	110	80	120	1.078	1.63	30	
Sample ID 0405112-009AMSD	SampType: MSD	TestCoo	le: 200.7	Units: mg/L		Prep Date	: 5/21/20	004	Run ID: ICI	P_040522A	
Client ID: ZZZZZ	Batch ID: 766	TestN	lo: E200.7	(E200.7)		Analysis Date	: 5/22/20	004	SeqNo: 50	488	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order: 0405081

Project:

Sample ID 0405112-009AMSD	SampType: MSD	TestCod	de: 200.7	Units: mg/L		Prep Date	e: 5/21/20	04	Run ID: ICF	P_040522A	
Client ID: ZZZZZ	Batch ID: 766	TestN	lo: E200.7	(E200.7)		Analysis Dat	e: 5/22/20	04	SeqNo: 504	488	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	1.053	0.010	1	0	105	80	120	1.137	7.69	30	
Barium	2.095	0.020	2	0.08642	100	80	120	2.097	0.107	30	
Beryllium	1.134	0.010	1	0	113	80	120	1.051	7.58	30	
Cadmium	1.183	0.010	1	0	118	80	120	1.191	0.683	30	
Chromium	1.027	0.010	1	0	103	80	120	1.006	2.03	30	
Cobalt	1.12	0.010	1	0	112	80	120	1.084	3.32	30	
Copper	1.138	0.010	1	0	114	80	120	1.141	0.259	30	
Lead	1.127	0.050	1	0	113	80	120	1.114	1.10	30	
Molybdenum	1.132	0.010	1	0.01725	112	80	120	1.12	1.11	30	
Nickel	1.139	0.030	1	0	114	80	120	1.132	0.645	30	
Selenium	1.064	0.020	1	0	106	80	120	1.033	2.93	30	
Silver	1.022	0.010	1	0	102	80	120	1.049	2.57	30	
Thallium	1.102	0.050	1	0	110	80	120	1.091	0.968	30	
Vanadium	1.15	0.010	1	0	115	80	120	1.138	1.02	30	
Zinc	1.14	0.030	1	0	114	80	120	1.13	0.893	30	

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.7

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010B_S

Sample ID MB-760	SampType: MBLK	TestCode: 6010B_S	Units: mg/Kg	Prep Date: 5/20/2004	Run ID: ICP_040520E
Client ID: ZZZZZ	Batch ID: 760	TestNo: SW6010B	(SW3050B)	Analysis Date: 5/20/2004	SeqNo: 50230
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Antimony	ND	1.4			
Arsenic	ND	1.7			
Barium	ND	1.3			
Beryllium	ND	0.83			
Cadmium	ND	0.25			
Chromium	ND	0.22			
Cobalt	ND	0.18			
Copper	ND	0.24			
Lead	ND	0.37			
Molybdenum	ND	0.24			
Nickel	ND	0.20			
Selenium	ND	0.77			
Silver	ND	0.28			
Thallium	ND	2.6			
Vanadium	ND	0.79			
Zinc	ND	2.1			
Sample ID MB-760	SampType: MBLK	TestCode: 6010B_S	Units: mg/Kg	Prep Date: 5/20/2004	Run ID: ICP_040521A
Client ID: ZZZZZ	Batch ID: 760	TestNo: SW6010B	(SW3050B)	Analysis Date: 5/21/2004	SeqNo: 50411
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Antimony	ND	1.4			
Arsenic	ND	1.7			
Barium	ND	1.3			
Beryllium	ND	0.83			
Cadmium	ND	0.25			
Chromium	ND	0.22			
Chilomium		0.18			
Cobalt	ND	0.10			
	ND ND	0.24			
Cobalt					

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

W. 10 1 0405001

Work Order: 0405081 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010B_S

Sample ID MB-760	SampType: MBLK	TestCode: 6010B_S	Units: mg/Kg	Prep Date: 5/20/2004	Run ID: ICP_040521A
Client ID: ZZZZZ	Batch ID: 760	TestNo: SW6010B	(SW3050B)	Analysis Date: 5/21/2004	SeqNo: 50411
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nickel	ND	0.20			
Selenium	ND	0.77			
Silver	ND	0.28			
Thallium	ND	2.6			
Vanadium	ND	0.79			
Zinc	ND	2.1			
Sample ID MB-767	SampType: MBLK	TestCode: 6010B_S	Units: mg/Kg	Prep Date: 5/22/2004	Run ID: ICP_040524A
Client ID: ZZZZZ	Batch ID: 767	TestNo: SW6010B	(SW3050B)	Analysis Date: 5/24/2004	SeqNo: 50531
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic	ND	1.7			
Cadmium	ND	0.25			
Chromium	ND	0.22			
Lead	ND	0.37			
Nickel	ND	0.20			
Zinc	ND	2.1			
Sample ID MB-767	SampType: MBLK	TestCode: 6010B_S	Units: mg/Kg	Prep Date: 5/22/2004	Run ID: ICP_040524B
Client ID: ZZZZZ	Batch ID: 767	TestNo: SW6010B	(SW3050B)	Analysis Date: 5/24/2004	SeqNo: 50712
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Antimony	ND	1.4			
Arsenic	ND	1.7			
Barium	ND	1.3			
Beryllium	ND	0.84			
Cadmium	ND	0.25			
Chromium	ND	0.22			
Cobalt	ND	0.18			
Copper	ND	0.24			
• •	ND	0.37			

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010B_S

Sample ID MB-767	SampType: MBLK	TestCode	e: 6010B_S	Units: mg/Kg		Prep Date	5/22/20	04	Run ID: ICF	_040524B	
Client ID: ZZZZZ	Batch ID: 767	TestNo	o: SW6010B	(SW3050B)		Analysis Date	5/24/20	04	SeqNo: 507	712	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Molybdenum	ND	0.24									
Selenium	ND	0.78									
Silver	ND	0.29									
Thallium	ND	2.7									
Vanadium	ND	0.79									
Zinc	ND	2.1									
Sample ID LCS-760	SampType: LCS	TestCode	e: 6010B_S	Units: mg/Kg		Prep Date	5/20/20	004	Run ID: ICF	P_040520E	
Client ID: ZZZZZ	Batch ID: 760	TestNo	o: SW6010B	(SW3050B)		Analysis Date	5/20/20	04	SeqNo: 502	228	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	110.4	1.4	100	0	110	80	120	0	0		
Arsenic	111.9	1.7	100	0	112	80	120	0	0		
Barium	204.2	1.3	200	0	102	80	120	0	0		
Beryllium	109.4	0.84	100	0	109	80	120	0	0		
Cadmium	110.3	0.25	100	0	110	80	120	0	0		
Chromium	97.52	0.22	100	0	97.5	80	120	0	0		
Cobalt	106	0.18	100	0	106	80	120	0	0		
Copper	109.6	0.24	100	0	110	80	120	0	0		
Lead	106.1	0.37	100	0	106	80	120	0	0		
Molybdenum	102.8	0.24	100	0	103	80	120	0	0		
Nickel	106.2	0.20	100	0	106	80	120	0	0		
Selenium	99.93	0.78	100	0	99.9	80	120	0	0		
Silver	96.66	0.29	100	0	96.7	80	120	0	0		
Thallium	104.1	2.7	100	0	104	80	120	0	0		
Vanadium	109.4	0.79	100	0	109	80	120	0	0		
Zinc	104.5	2.1	100	0	105	80	120	0	0		

Work Order: 0405081

Lead

Nickel

Zinc

Project:

Sample ID LCS-760	SampType: LCS	TestCoo	le: 6010B_S	Units: mg/Kg		Prep Date	5/20/200)4	Run ID: ICF	P_040521A	
Client ID: ZZZZZ	Batch ID: 760	TestN	lo: SW6010B	(SW3050B)		Analysis Date	: 5/21/200)4	SeqNo: 504	409	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	113.7	1.4	100	0	114	80	120	0	0		
Arsenic	112.9	1.7	100	0	113	80	120	0	0		
Barium	197.6	1.3	200	0	98.8	80	120	0	0		
Beryllium	106.4	0.84	100	0	106	80	120	0	0		
Cadmium	105.4	0.25	100	0	105	80	120	0	0		
Chromium	94	0.22	100	0	94	80	120	0	0		
Cobalt	101.7	0.18	100	0	102	80	120	0	0		
Copper	105.6	0.24	100	0	106	80	120	0	0		
Lead	101.3	0.37	100	0	101	80	120	0	0		
Molybdenum	101.6	0.24	100	0	102	80	120	0	0		
Nickel	104.8	0.20	100	0	105	80	120	0	0		
Selenium	102	0.78	100	0	102	80	120	0	0		
Silver	103.8	0.29	100	0	104	80	120	0	0		
Thallium	96.25	2.7	100	0	96.2	80	120	0	0		
Vanadium	106.6	0.79	100	0	107	80	120	0	0		
Zinc	102	2.1	100	0	102	80	120	0	0		
Sample ID LCS-767	SampType: LCS	TestCod	le: 6010B_S	Units: mg/Kg		Prep Date	: 5/22/200)4	Run ID: ICF	P_040524A	
Client ID: ZZZZZ	Batch ID: 767	TestN	lo: SW6010B	(SW3050B)		Analysis Date	5/24/200)4	SeqNo: 50	529	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	100.9	1.7	100	0	101	80	120	0	0		
Cadmium	110.4	0.25	100	0	110	80	120	0	0		
Chromium	95.07	0.22	100	0	95.1	80	120	0	0		

0

0

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010B_S

105.6

108.3

108.8

0.37

0.20

2.1

100

100

100

0

0

0

106

108

109

80

80

80

120

120

120

S - Spike Recovery outside accepted recovery limits

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010B_S

Sample ID LCS-767	SampType: LCS	TestCo	de: 6010B_S	Units: mg/Kg		Prep Date	: 5/22/20	04	Run ID: ICF	P_040524B	
Client ID: ZZZZZ	Batch ID: 767	Test	lo: SW6010B	(SW3050B)		Analysis Date	5/24/20	004	SeqNo: 507	710	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	114.9	1.4	100	0	115	80	120	0	0		
Arsenic	109	1.7	100	0	109	80	120	0	0		
Barium	197.9	1.3	200	0	99	80	120	0	0		
Beryllium	108.8	0.84	100	0	109	80	120	0	0		
Cadmium	111.9	0.25	100	0	112	80	120	0	0		
Chromium	101.7	0.22	100	0	102	80	120	0	0		
Cobalt	106.6	0.18	100	0	107	80	120	0	0		
Copper	108.3	0.24	100	0	108	80	120	0	0		
Lead	108.8	0.37	100	0	109	80	120	0	0		
Molybdenum	102.6	0.24	100	0	103	80	120	0	0		
Selenium	103.4	0.78	100	0	103	80	120	0	0		
Silver	104.2	0.29	100	0	104	80	120	0	0		
Thallium	102.1	2.7	100	0	102	80	120	0	0		
Vanadium	109.9	0.79	100	0	110	80	120	0	0		
Zinc	106.8	2.1	100	0	107	80	120	0	0		
Sample ID LCSD-760	SampType: LCSD	TestCo	de: 6010B_S	Units: mg/Kg		Prep Date	: 5/20/20	04	Run ID: ICF	P_040520E	
Client ID: ZZZZZ											
CHOIR ID: ELLEL	Batch ID: 760	Test	lo: SW6010B	(SW3050B)		Analysis Date	5/20/20	04	SeqNo: 502	229	
	Batch ID: 760 Result	TestN PQL		(SW3050B) SPK Ref Val	%REC	•		RPD Ref Val	SeqNo: 502 %RPD	RPDLimit	Qual
Analyte Antimony				,		•			•		Qual
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Analyte Antimony Arsenic	Result 108.1	PQL 1.4	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit 120	RPD Ref Val	%RPD 2.10	RPDLimit 20	Qual
Analyte Antimony	Result 108.1 111.2	PQL 1.4 1.7	SPK value 100 100	SPK Ref Val 0 0	%REC 108 111	LowLimit 80	HighLimit 120 120	RPD Ref Val 110.4 111.9	%RPD 2.10 0.573	RPDLimit 20 20	Qual
Analyte Antimony Arsenic Barium Beryllium	Result 108.1 111.2 202.8	PQL 1.4 1.7 1.3	SPK value 100 100 200	SPK Ref Val 0 0 0	%REC 108 111 101	LowLimit 80 80 80	120 120 120 120	RPD Ref Val 110.4 111.9 204.2	%RPD 2.10 0.573 0.646	RPDLimit 20 20 20 20	Qual
Analyte Antimony Arsenic Barium Beryllium Cadmium	Result 108.1 111.2 202.8 108.3	PQL 1.4 1.7 1.3 0.84	SPK value 100 100 200 100	SPK Ref Val 0 0 0 0 0	%REC 108 111 101 108	80 80 80 80 80	120 120 120 120 120	RPD Ref Val 110.4 111.9 204.2 109.4	%RPD 2.10 0.573 0.646 0.942	RPDLimit 20 20 20 20 20 20	Qual
Analyte Antimony Arsenic Barium Beryllium Cadmium Chromium	Result 108.1 111.2 202.8 108.3 109.5	PQL 1.4 1.7 1.3 0.84 0.25	SPK value 100 100 200 100 100	SPK Ref Val 0 0 0 0 0 0 0	%REC 108 111 101 108 110	80 80 80 80 80 80	120 120 120 120 120 120	RPD Ref Val 110.4 111.9 204.2 109.4 110.3	%RPD 2.10 0.573 0.646 0.942 0.661	RPDLimit 20 20 20 20 20 20 20	Qual
Analyte Antimony Arsenic Barium	Result 108.1 111.2 202.8 108.3 109.5 99.69	1.4 1.7 1.3 0.84 0.25 0.22	SPK value 100 100 200 100 100 100	SPK Ref Val 0 0 0 0 0 0 0 0	%REC 108 111 101 108 110 99.7	80 80 80 80 80 80 80	120 120 120 120 120 120 120	RPD Ref Val 110.4 111.9 204.2 109.4 110.3 97.52	%RPD 2.10 0.573 0.646 0.942 0.661 2.20	RPDLimit 20 20 20 20 20 20 20 20 20	Qual
Analyte Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	Result 108.1 111.2 202.8 108.3 109.5 99.69 104.9	1.4 1.7 1.3 0.84 0.25 0.22 0.18	SPK value 100 100 200 100 100 100 100	SPK Ref Val 0 0 0 0 0 0 0 0 0	%REC 108 111 101 108 110 99.7 105	80 80 80 80 80 80 80 80 80	120 120 120 120 120 120 120 120	RPD Ref Val 110.4 111.9 204.2 109.4 110.3 97.52 106	%RPD 2.10 0.573 0.646 0.942 0.661 2.20 1.07	RPDLimit 20 20 20 20 20 20 20 20 20 20 20	Qual
Analyte Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	Result 108.1 111.2 202.8 108.3 109.5 99.69 104.9 109.2	PQL 1.4 1.7 1.3 0.84 0.25 0.22 0.18 0.24	SPK value 100 100 200 100 100 100 100 100 100	SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0	%REC 108 111 101 108 110 99.7 105 109	80 80 80 80 80 80 80 80 80	120 120 120 120 120 120 120 120 120	RPD Ref Val 110.4 111.9 204.2 109.4 110.3 97.52 106 109.6	%RPD 2.10 0.573 0.646 0.942 0.661 2.20 1.07 0.347	RPDLimit 20 20 20 20 20 20 20 20 20 20 20 20 20	Qual

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010B_S

Sample ID LCSD-760	SampType: LCSD	TestCod	le: 6010B_S	Units: mg/Kg		Prep Date	: 5/20/20	004	Run ID: ICI	P_040520E	
Client ID: ZZZZZ	Batch ID: 760	TestN	lo: SW6010B	(SW3050B)		Analysis Date	: 5/20/20	004	SeqNo: 50	229	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Selenium	97.87	0.78	100	0	97.9	80	120	99.93	2.09	20	
Silver	96.26	0.29	100	0	96.3	80	120	96.66	0.418	20	
Thallium	102.4	2.7	100	0	102	80	120	104.1	1.64	20	
Vanadium	108.1	0.79	100	0	108	80	120	109.4	1.13	20	
Zinc	103.1	2.1	100	0	103	80	120	104.5	1.40	20	
Sample ID LCSD-760	SampType: LCSD	TestCod	le: 6010B_S	Units: mg/Kg		Prep Date	: 5/20/20	004	Run ID: ICI	P_040521A	
Client ID: ZZZZZ	Batch ID: 760	TestN	lo: SW6010B	(SW3050B)		Analysis Date	: 5/21/20	004	SeqNo: 50	410	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	104.4	1.4	100	0	104	80	120	113.7	8.53	20	
Arsenic	114.5	1.7	100	0	115	80	120	112.9	1.41	20	
Barium	199.3	1.3	200	0	99.7	80	120	197.6	0.896	20	
Beryllium	107.2	0.84	100	0	107	80	120	106.4	0.711	20	
Cadmium	105.8	0.25	100	0	106	80	120	105.4	0.437	20	
Chromium	94.22	0.22	100	0	94.2	80	120	94	0.237	20	
Cobalt	103	0.18	100	0	103	80	120	101.7	1.28	20	
Copper	105.6	0.24	100	0	106	80	120	105.6	0.0618	20	
Lead	101.7	0.37	100	0	102	80	120	101.3	0.373	20	
Molybdenum	102.1	0.24	100	0	102	80	120	101.6	0.494	20	
Nickel	104.8	0.20	100	0	105	80	120	104.8	0.0169	20	
Selenium	99.69	0.78	100	0	99.7	80	120	102	2.33	20	
Silver	104.3	0.29	100	0	104	80	120	103.8	0.540	20	
Thallium	97.21	2.7	100	0	97.2	80	120	96.25	0.991	20	
Vanadium	105.3	0.79	100	0	105	80	120	106.6	1.25	20	
Zinc	107.1	2.1	100	0	107	80	120	102	4.92	20	
Sample ID LCSD-767	SampType: LCSD	TestCod	le: 6010B_S	Units: mg/Kg		Prep Date	: 5/22/20	004	Run ID: ICI	P_040524A	
Client ID: ZZZZZ	Batch ID: 767	TestN	lo: SW6010B	(SW3050B)		Analysis Date	: 5/24/20	004	SeqNo: 50	530	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010B_S

Sample ID LCSD-767	SampType: LCSD	TestCoo	le: 6010B_S	Units: mg/Kg		Prep Date	5/22/20	004	Run ID: ICI	P_040524A	
Client ID: ZZZZZ	Batch ID: 767	TestN	lo: SW6010B	(SW3050B)		Analysis Date	5/24/20	004	SeqNo: 50	530	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	100.5	1.7	100	0	101	80	120	100.9	0.384	20	
Cadmium	109.6	0.25	100	0	110	80	120	110.4	0.677	20	
Chromium	95.51	0.22	100	0	95.5	80	120	95.07	0.455	20	
Lead	105.9	0.37	100	0	106	80	120	105.6	0.301	20	
Nickel	109	0.20	100	0	109	80	120	108.3	0.605	20	
Zinc	108.2	2.1	100	0	108	80	120	108.8	0.580	20	
Sample ID LCSD-767	SampType: LCSD	TestCoo	le: 6010B_S	Units: mg/Kg		Prep Date	: 5/22/20	004	Run ID: ICI	P_040524B	
Client ID: ZZZZZ	Batch ID: 767	TestN	lo: SW6010B	(SW3050B)		Analysis Date	5/24/20	004	SeqNo: 50	711	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	108.9	1.4	100	0	109	80	120	114.9	5.38	20	
Arsenic	111.5	1.7	100	0	111	80	120	109	2.26	20	
Barium	198.7	1.3	200	0	99.4	80	120	197.9	0.410	20	
Beryllium	110	0.84	100	0	110	80	120	108.8	1.05	20	
Cadmium	110.9	0.25	100	0	111	80	120	111.9	0.870	20	
Chromium	99.43	0.22	100	0	99.4	80	120	101.7	2.30	20	
Cobalt	105.3	0.18	100	0	105	80	120	106.6	1.30	20	
Copper	109	0.24	100	0	109	80	120	108.3	0.660	20	
Lead	108.3	0.37	100	0	108	80	120	108.8	0.449	20	
Molybdenum	103.8	0.24	100	0	104	80	120	102.6	1.12	20	
Selenium	104.4	0.78	100	0	104	80	120	103.4	0.897	20	
Silver	103.4	0.29	100	0	103	80	120	104.2	0.809	20	
Thallium	100.9	2.7	100	0	101	80	120	102.1	1.19	20	
Vanadium	110	0.79	100	0	110	80	120	109.9	0.100	20	
Zinc	106.5	2.1	100	0	107	80	120	106.8	0.286	20	
Sample ID 0405079-011AMS	SampType: MS	TestCoo	le: 6010B_S	Units: mg/Kg		Prep Date	5/20/20	004	Run ID: ICI	P_040520E	
Client ID: ZZZZZ	Batch ID: 760	TestN	lo: SW6010B	(SW3050B)		Analysis Date	5/20/20	004	SeqNo: 50	200	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode:	6010B	S

Sample ID 0405079-011AMS	SampType: MS	TestCo	de: 6010B_S	Units: mg/Kg		Prep Date	: 5/20/20	04	Run ID: ICF	P_040520E	
Client ID: ZZZZZ	Batch ID: 760	Test	No: SW6010B	(SW3050B)		Analysis Date	e: 5/20/20	004	SeqNo: 502	200	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	98.91	1.4	100.5	0	98.4	65	135	0	0		
Arsenic	114.6	1.8	100.5	0	114	65	135	0	0		
Barium	299	1.3	201	109	94.5	65	135	0	0		
Beryllium	103.2	0.84	100.5	0	103	65	135	0	0		
Cadmium	98.52	0.25	100.5	2.321	95.7	65	135	0	0		
Chromium	129.5	0.22	100.5	32.95	96	65	135	0	0		
Cobalt	101.6	0.18	100.5	8.918	92.2	65	135	0	0		
Copper	131.2	0.24	100.5	26.89	104	65	135	0	0		
Lead	105.4	0.37	100.5	12.67	92.2	65	135	0	0		
Molybdenum	94.39	0.25	100.5	0	93.9	65	135	0	0		
Nickel	134.9	0.20	100.5	37.35	97	65	135	0	0		
Selenium	99.93	0.78	100.5	0	99.4	65	135	0	0		
Silver	97.43	0.29	100.5	0	96.9	65	135	0	0		
Thallium	96.75	2.7	100.5	0	96.3	65	135	0	0		
Vanadium	142.3	0.80	100.5	40.12	102	65	135	0	0		
Zinc	158.3	2.1	100.5	49.2	109	65	135	0	0		
Sample ID 0405083-008AMS	SampType: MS	TestCo	de: 6010B_S	Units: mg/Kg		Prep Date	: 5/20/20	04	Run ID: ICF	P_040521A	
Client ID: ZZZZZ	Batch ID: 760	Test	No: SW6010B	(SW3050B)		Analysis Date	: 5/21/20	04	SeqNo: 503	394	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	104.1	1.4	95.24	0	109	65	135	0	0		
Arsenic	113.7	1.7	95.24	14.98	104	65	135	0	0		
Barium	229.7	1.3	190.5	54.62	91.9	65	135	0	0		
D !!!								0	0		
Beryllium	98.01	0.80	95.24	0	103	65	135	0	U		
Beryllium Cadmium		0.80 0.24	95.24 95.24	0 2.602	103 97	65 65	135 135	0	0		
Cadmium	98.01										
Cadmium Chromium	98.01 95.03	0.24	95.24	2.602	97	65	135	0	0		
Cadmium Chromium Cobalt	98.01 95.03 137	0.24 0.21	95.24 95.24	2.602 45.72	97 95.9	65 65	135 135	0 0	0		
•	98.01 95.03 137 94.78	0.24 0.21 0.17	95.24 95.24 95.24	2.602 45.72 8.286	97 95.9 90.8	65 65 65	135 135 135	0 0 0	0 0		

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010B_S

Sample ID 0405083-008AMS	SampType: MS	TestCo	de: 6010B_S	Units: mg/Kg		Prep Date	e: 5/20/2 0	004	Run ID: ICF	_040521A	
Client ID: ZZZZZ	Batch ID: 760	Test	lo: SW6010B	(SW3050B)		Analysis Date	e: 5/21/2 0	004	SeqNo: 503	394	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver	97.69	0.27	95.24	1.294	101	65	135	0	0		
Thallium	87.06	2.5	95.24	0	91.4	65	135	0	0		
Vanadium	130.2	0.76	95.24	32.32	103	65	135	0	0		
Zinc	270.9	2.0	47.62	225.4	95.5	65	135	0	0		
Sample ID 0405081-036AMS	SampType: MS	TestCo	de: 6010B_S	Units: mg/Kg		Prep Date	e: 5/22/20	004	Run ID: ICF	_040524A	
Client ID: EB-12-3.0	Batch ID: 767	Test	lo: SW6010B	(SW3050B)		Analysis Date	e: 5/24/2 0	004	SeqNo: 505	511	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	105.1	1.7	98.04	0	107	65	135	0	0		
Cadmium	84.96	0.25	98.04	4.102	82.5	65	135	0	0		
Chromium	131.8	0.21	98.04	48.04	85.4	65	135	0	0		
Lead	96.79	0.36	98.04	9.052	89.5	65	135	0	0		
Nickel	143.3	0.20	98.04	67.38	77.4	65	135	0	0		
Zinc	141.7	2.0	98.04	59.07	84.3	65	135	0	0		
Sample ID 0405107-003AMS	SampType: MS	TestCo	de: 6010B_S	Units: mg/Kg		Prep Date	e: 5/22/20	004	Run ID: ICF	_040524A	
Client ID: ZZZZZ	Batch ID: 767	Test	No: SW6010B	(SW3050B)		Analysis Dat	e: 5/24/20	004	SeqNo: 505	515	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	115.6	1.7	98.04	0	118	65	135	0	0		
Lead	263.9	0.36	98.04	175.9	89.7	65	135	0	0		
Sample ID 0405098-002AMS	SampType: MS	TestCo	de: 6010B_S	Units: mg/Kg		Prep Dat	e: 5/22/20	004	Run ID: ICF	_040524B	
Client ID: ZZZZZ	Batch ID: 767	Test	lo: SW6010B	(SW3050B)		Analysis Date	e: 5/24/20	004	SeqNo: 506	699	
	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Analyte											
	96.47	1.4	97.09	0	99.4	65	135	0	0		
Analyte Antimony Barium	96.47 286.7	1.4 1.3	97.09 194.2	0 116.5	99.4 87.6	65 65	135 135	0	0		
Antimony								_			

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010B_S

Sample ID 0405098-002AMS	SampType: MS	TestCo	de: 6010B_S	Units: mg/Kg		Prep Date	: 5/22/20	004	Run ID: ICI	P_040524B	
Client ID: ZZZZZ	Batch ID: 767	Testi	No: SW6010B	(SW3050B)		Analysis Date	5/24/20	004	SeqNo: 50	699	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	99.2	0.36	97.09	8.7	93.2	65	135	0	0		
Molybdenum	90.4	0.24	97.09	0	93.1	65	135	0	0		
Selenium	92.19	0.76	97.09	0	95	65	135	0	0		
Zinc	120.7	2.0	97.09	31.79	91.5	65	135	0	0		
Sample ID 0405079-011AMSD	SampType: MSD	TestCo	de: 6010B_S	Units: mg/Kg		Prep Date	: 5/20/20	004	Run ID: ICI	P_040520E	
Client ID: ZZZZZ	Batch ID: 760	Testi	No: SW6010B	(SW3050B)		Analysis Date	5/20/20	004	SeqNo: 50	201	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	97.15	1.4	97.09	0	100	65	135	98.91	1.80	20	
Arsenic	109.7	1.7	97.09	0	113	65	135	114.6	4.35	20	
Barium	287.6	1.3	194.2	109	92	65	135	299	3.89	20	
Beryllium	100.3	0.82	97.09	0	103	65	135	103.2	2.77	20	
Cadmium	96.26	0.24	97.09	2.321	96.8	65	135	98.52	2.33	20	
Chromium	124	0.21	97.09	32.95	93.8	65	135	129.5	4.27	20	
Cobalt	98.84	0.18	97.09	8.918	92.6	65	135	101.6	2.74	20	
Copper	122.7	0.23	97.09	26.89	98.6	65	135	131.2	6.75	20	
Lead	99.13	0.36	97.09	12.67	89.1	65	135	105.4	6.11	20	
Molybdenum	94.3	0.24	97.09	0	97.1	65	135	94.39	0.0942	20	
Nickel	128.6	0.19	97.09	37.35	94	65	135	134.9	4.73	20	
Selenium	87.2	0.76	97.09	0	89.8	65	135	99.93	13.6	20	
Silver	93.87	0.28	97.09	0	96.7	65	135	97.43	3.73	20	
Thallium	93.65	2.6	97.09	0	96.5	65	135	96.75	3.26	20	
Vanadium	136.1	0.77	97.09	40.12	98.8	65	135	142.3	4.50	20	
Zinc	143.3	2.0	97.09	49.2	96.9	65	135	158.3	9.95	20	
Sample ID 0405083-008AMSD	SampType: MSD	TestCo	de: 6010B_S	Units: mg/Kg		Prep Date	5/20/20	004	Run ID: ICI	P_040521A	
Client ID: ZZZZZ	Batch ID: 760	Test	No: SW6010B	(SW3050B)		Analysis Date	5/21/20	004	SeqNo: 50	395	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	104.7	1.4	98.52	0	106	65	135	104.1	0.549	20	

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010B_S

Sample ID 0405083-008AMSD	SampType: MSD	TestCod	de: 6010B_S	Units: mg/Kg		Prep Date	: 5/20/20	004	Run ID: ICI	P_040521A	
Client ID: ZZZZZ	Batch ID: 760	Test	No: SW6010B	(SW3050B)		Analysis Date	: 5/21/20	004	SeqNo: 50	395	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	115.3	1.7	98.52	14.98	102	65	135	113.7	1.38	20	
Barium	226.7	1.3	197	54.62	87.3	65	135	229.7	1.33	20	
Beryllium	100.2	0.83	98.52	0	102	65	135	98.01	2.25	20	
Cadmium	96.24	0.25	98.52	2.602	95	65	135	95.03	1.27	20	
Chromium	136.2	0.21	98.52	45.72	91.8	65	135	137	0.588	20	
Cobalt	96.2	0.18	98.52	8.286	89.2	65	135	94.78	1.48	20	
Lead	285.4	0.36	98.52	189.6	97.2	65	135	273.7	4.18	20	
Molybdenum	94.87	0.24	98.52	0	96.3	65	135	91.36	3.78	20	
Selenium	94.73	0.77	98.52	0	96.2	65	135	86.35	9.26	20	
Silver	98.91	0.28	98.52	1.294	99.1	65	135	97.69	1.24	20	
Thallium	85.75	2.6	98.52	0	87	65	135	87.06	1.51	20	
Vanadium	131.4	0.78	98.52	32.32	101	65	135	130.2	0.912	20	
Zinc	281.8	2.0	49.26	225.4	115	65	135	270.9	3.96	20	
Sample ID 0405081-036AMSD	SampType: MSD	TestCod	de: 6010B_S	Units: mg/Kg		Prep Date	: 5/22/20	004	Run ID: ICI	P_040524A	
Client ID: EB-12-3.0	Batch ID: 767	TestN	No: SW6010B	(SW3050B)		Analysis Date	: 5/24/20	004	SeqNo: 50	512	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	92.6	1.6	93.46	0	99.1	65	135	105.1	12.6	20	
Cadmium	78.67	0.23	93.46	4.102	79.8	65	135	84.96	7.68	20	
Chromium	124.8	0.20	93.46	48.04	82.1	65	135	131.8	5.42	20	
Lead	91.2	0.34	93.46	9.052	87.9	65	135	96.79	5.95	20	
Nickel	135.2	0.19	93.46	67.38	72.5	65	135	143.3	5.83	20	
Zinc	130.9	1.9	93.46	59.07	76.9	65	135	141.7	7.92	20	
Sample ID 0405107-003AMSD	SampType: MSD	TestCod	de: 6010B_S	Units: mg/Kg		Prep Date	5/22/20	004	Run ID: ICI	P_040524A	
Client ID: ZZZZZ	Batch ID: 767	TestN	No: SW6010B	(SW3050B)		Analysis Date	: 5/24/20	004	SeqNo: 50	516	
	Decult	PQL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Analyte	Result	. ~=									
Analyte Arsenic	Result 116	1.7	99.01	0	117	65	135	115.6	0.380	20	

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order: 0405081

Project:

Sample ID 0405098-002AMSD Client ID: ZZZZZ	SampType: MSD Batch ID: 767		de: 6010B_S	Units: mg/Kg (SW3050B)		Prep Dat Analysis Dat			Run ID: ICF SegNo: 507	_	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit		RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	97.03	1.3	94.79	0	102	65	135	96.47	0.574	20	Quui
Barium	287.2	1.3	189.6	116.5	90	65	135	286.7	0.177	20	
Cadmium	93.49	0.24	94.79	2.44	96.1	65	135	92.94	0.590	20	
Cobalt	105.2	0.17	94.79	18.81	91.2	65	135	107.3	1.96	20	
Lead	98.56	0.35	94.79	8.7	94.8	65	135	99.2	0.641	20	
Molybdenum	93.03	0.23	94.79	0	98.1	65	135	90.4	2.87	20	
Selenium	90.4	0.74	94.79	0	95.4	65	135	92.19	1.96	20	
Zinc	118.6	2.0	94.79	31.79	91.6	65	135	120.7	1.69	20	

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010B_S

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8021B_S

Sample ID BLANK-4	SampType:	MBLK	TestCod	de: 8021B_S	Units: µg/Kg		Prep Date	e: 5/25/2 0	004	Run ID: V	DCGC1_0405	525D
Client ID: ZZZZZ	Batch ID:	R3581	TestN	lo: SW8021B			Analysis Date	e: 5/26/2 0	004	SeqNo: 50	837	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene		ND	10									
Ethylbenzene		ND	10									
Toluene		ND	10									
Xylenes, Total		ND	10									
Surr: Trifluorotoluene		182.1	0	200	0	91.1	65	135	0	0		
Sample ID BLANK-1	SampType:	MBLK	TestCod	de: 8021B_S	Units: µg/Kg		Prep Date	e: 5/27/2 0	004	Run ID: V	DCGC1_0405	27B
Client ID: ZZZZZ	Batch ID:	R3590	TestN	lo: SW8021B			Analysis Date	e: 5/27/2 0	004	SeqNo: 51	015	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene		ND	10									
Ethylbenzene		ND	10									
Toluene		ND	10									
Xylenes, Total		ND	10									
Surr: Trifluorotoluene		166.3	0	200	0	83.2	65	135	0	0		
Sample ID LCS-3,MBTEX,50	SampType:	LCS	TestCod	de: 8021B_S	Units: µg/Kg		Prep Date	e: 5/25/2 0	004	Run ID: V	DCGC1_0405	525D
Client ID: ZZZZZ	Batch ID:	R3581	TestN	lo: SW8021B			Analysis Date	e: 5/26/2 0	004	SeqNo: 50	838	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene		43.48	10	50	0	87	70	130	0	0		
Ethylbenzene		44.02	10	50	0	88	70	130	0	0		
Toluene		42.92	10	50	0	85.8	70	130	0	0		
Xylenes, Total		132.2	10	150	0	88.1	70	130	0	0		
Surr: Trifluorotoluene		175.1	0	200	0	87.6	65	135	0	0		
Sample ID LCS-1, MBTEX, 50	SampType:	LCS	TestCod	de: 8021B_S	Units: µg/Kg		Prep Date	e: 5/27/2 0	004	Run ID: V	DCGC1_0405	27B
Client ID: ZZZZZ	Batch ID:	R3590	TestN	lo: SW8021B			Analysis Date	e: 5/27/2 0	004	SeqNo: 51	016	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
rangio								U				

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8021B_S

Sample ID LCS-1, MBTEX, 50	SampType: LCS	TestCode: 8021B_S Units: μg/Kg TestNo: SW8021B			Prep Date: 5/27/2004 Analysis Date: 5/27/2004				Run ID: VOCGC1_040527B			
Client ID: ZZZZZ	Batch ID: R3590								SeqNo: 51016			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Ethylbenzene	46.9	10	50	0	93.8	70	130	0	0			
Toluene	45.14	10	50	0	90.3	70	130	0	0			
Xylenes, Total	145.1	10	150	0	96.8	70	130	0	0			
Surr: Trifluorotoluene	173.9	0	200	0	86.9	65	135	0	0			
Sample ID LCSD-3,MBTEX,50	SampType: LCSD	TestCode: 8021B_S Units: μg/Kg			Prep Date: 5/25/2004				Run ID: VOCGC1_040525D			
Client ID: ZZZZZ	Batch ID: R3581	TestNo: SW8021B			Analysis Date: 5/26/2004				SeqNo: 50839			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Benzene	44.09	10	50	0	88.2	70	130	43.48	1.39	30		
Ethylbenzene	44.03	10	50	0	88.1	70	130	44.02	0.0229	30		
Toluene	43.14	10	50	0	86.3	70	130	42.92	0.509	30		
Xylenes, Total	132.2	10	150	0	88.2	70	130	132.2	0.0481	30		
Surr: Trifluorotoluene	172	0	200	0	86	65	135	0	0	0		
Sample ID LCSD-1, MBTEX	SampType: LCSD	TestCode: 8021B_S Units: µg/Kg		Prep Date: 5/27/2004				Run ID: VOCGC1_040527B				
Client ID: ZZZZZ	Batch ID: R3590	TestNo: SW8021B		Analysis Date: 5/27/2004				SeqNo: 51017				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Benzene	39.27	10	50	0	78.5	70	130	41.48	5.47	30		
Ethylbenzene	43.95	10	50	0	87.9	70	130	46.9	6.48	30		
Toluene	41.14	10	50	0	82.3	70	130	45.14	9.27	30		
Xylenes, Total	134.8	10	150	0	89.9	70	130	145.1	7.39	30		
Surr: Trifluorotoluene	166.2	0	200	0	83.1	65	135	0	0	0		

Qualifiers:

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8021B_W

Sample ID blank2	SampType: MBLK	TestCode: 8021B W Units: µg/L Prep Date: 6/1/200					e: 6/1/20 0	04 Run ID: VOCGC1 040601B				
Client ID: ZZZZZ	Batch ID: R3637	TestNo: SW8021B			Analysis Date: 6/1/2004				SegNo: 51470			
	20.02					,a., 0.0 Dat			004.10. 01	•		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Benzene	0.093	1.0									J	
Ethylbenzene	ND	1.0										
Toluene	0.094	1.0									J	
Xylenes, Total	ND	1.0										
Surr: Trifluorotoluene	101.2	0	119.1	0	85	65	135	0	0			
Sample ID LCS2DMBTEX	SampType: LCS	TestCode: 8021B_W Units: µg/L			Prep Date: 6/1/2004				Run ID: VOCGC1_040601B			
Client ID: ZZZZZ	Batch ID: R3637	TestNo: SW8021B			Analysis Date: 6/1/2004				SeqNo: 51471			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Benzene	26.17	1.0	29.76	0.093	87.6	65	135	0	0			
Ethylbenzene	27.57	1.0	29.76	0	92.6	65	135	0	0			
Toluene	26.27	1.0	29.76	0.094	87.9	65	135	0	0			
Xylenes, Total	81.1	1.0	89.28	0	90.8	65	135	0	0			
Surr: Trifluorotoluene	102.2	0	119.1	0	85.8	65	135	0	0			
Sample ID LCS2MBTEX	SampType: LCSD	TestCode: 8021B_W Units: µg/L			Prep Date: 6/1/2004				Run ID: VOCGC1_040601B			
Client ID: ZZZZZ	Batch ID: R3637	TestNo: SW8021B			Analysis Date: 6/1/2004				SeqNo: 51472			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Benzene	25.77	1.0	29.76	0.093	86.3	65	135	26.17	1.54	30		
Ethylbenzene	27.12	1.0	29.76	0	91.1	65	135	27.57	1.65	30		
Toluene	25.99	1.0	29.76	0.094	87	65	135	26.27	1.06	30		
Xylenes, Total	79.31	1.0	89.28	0	88.8	65	135	81.1	2.24	30		
Surr: Trifluorotoluene	100.6	0	119.1	0	84.5	65	135	0	0	30		

Qualifiers:

S - Spike Recovery outside accepted recovery limits

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Client ID: ZZZZZ	_imit Qual
1,1,1,2-Tetrachloroethane	_imit Qual
1,1,1-Trichloroethane ND 10 0	
1,1,2,2-Tetrachloroethane ND 10 0<	
1,1,2-Trichloroethane ND 10 0	
1,1-Dichloroethane ND 10 0 0 0 0 0 0 0 1,1-Dichloroethene ND 10 0	
1,1-Dichloroethene ND 10 0	
1,1-Dichloropropene ND 10 0	
1,2,3-Trichlorobenzene 4.47 10 0	
1,2,3-Trichloropropane ND 10 0 </td <td></td>	
1,2,4-Trichlorobenzene ND 10 0 <td>J</td>	J
1,2,4-Trichlorobenzene ND 10 0 <td></td>	
1,2-Dibromo-3-chloropropane ND 10 0 <t< td=""><td></td></t<>	
1,2-Dibromoethane (EDB) ND 10 0<	
1,2-Dichlorobenzene ND 10 0	
1,2-Dichloroethane (EDC) ND 10 0 0 0 0 0 0 0 0 1,2-Dichloropropane ND 10 0 0 0 0 0 0 0 0 1,3-Trimethylbenzene ND 10 0 0 0 0 0 0 0 0 1,3-Dichlorobenzene ND 10 0 0 0 0 0 0 0 0 1,3-Dichloropropane ND 10 0 0 0 0 0 0 0 0	
1,2-Dichloropropane ND 10 0	
1,3,5-Trimethylbenzene ND 10 0 0 0 0 0 0 0 1,3-Dichlorobenzene ND 10 0 0 0 0 0 0 0 0 1,3-Dichloropropane ND 10 0 0 0 0 0 0 0 0	
1,3-Dichlorobenzene ND 10 0 0 0 0 0 0 0 1,3-Dichloropropane ND 10 0 0 0 0 0 0 0 0	
1,3-Dichloropropane ND 10 0 0 0 0 0 0 0	
1,4-Dichlorobenzene ND 10 0 0 0 0 0 0	
2,2-Dichloropropane ND 10 0 0 0 0 0 0 0	
2-Chloroethyl vinyl ether ND 10 0 0 0 0 0 0	
2-Chlorotoluene ND 10 0 0 0 0 0 0	
4-Chlorotoluene ND 10 0 0 0 0 0 0	
4-Isopropyltoluene 2.34 10 0 0 0 0 0 0 0	J
Benzene ND 10 0 0 0 0 0 0	
Bromobenzene ND 10 0 0 0 0 0 0 0	
Bromochloromethane ND 10 0 0 0 0 0 0 0	
Bromodichloromethane ND 10 0 0 0 0 0 0 0	
Bromoform ND 10 0 0 0 0 0 0	
Carbon tetrachloride ND 10 0 0 0 0 0 0 0	

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Sample ID BLANK-1D	SampType: MBLK	TestCod	de: 8260_S	Units: µg/Kg		Prep Da	te: 5/22/2 0	004	Run ID: VO	CGCMS1_04	40522A
Client ID: ZZZZZ	Batch ID: R3567	TestN	lo: SW8260B			Analysis Da	te: 5/22/2 0	004	SeqNo: 500	643	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	ND	10	0	0	0	0	0	0	0		
Chloroform	ND	10	0	0	0	0	0	0	0		
Chloromethane	ND	10	0	0	0	0	0	0	0		
cis-1,2-Dichloroethene	ND	10	0	0	0	0	0	0	0		
Dibromochloromethane	ND	10	0	0	0	0	0	0	0		
Dibromomethane	ND	10	0	0	0	0	0	0	0		
Dichlorodifluoromethane	ND	10	0	0	0	0	0	0	0		
Ethyl tert-butyl ether (ETBE)	ND	10	0	0	0	0	0	0	0		
Ethylbenzene	ND	10	0	0	0	0	0	0	0		
Freon-113	ND	10	0	0	0	0	0	0	0		
Hexachlorobutadiene	2.8	10	0	0	0	0	0	0	0		J
Isopropyl ether (IPE)	ND	10	0	0	0	0	0	0	0		
Isopropylbenzene	ND	10	0	0	0	0	0	0	0		
Methyl tert-butyl ether (MTBE)	ND	10	0	0	0	0	0	0	0		
Methylene chloride	ND	50	0	0	0	0	0	0	0		
Naphthalene	ND	20	0	0	0	0	0	0	0		
n-Butylbenzene	3.34	10	0	0	0	0	0	0	0		J
n-Propylbenzene	ND	10	0	0	0	0	0	0	0		
sec-Butylbenzene	2.07	10	0	0	0	0	0	0	0		J
Styrene	ND	10	0	0	0	0	0	0	0		
t-Butyl alcohol (t-Butanol)	ND	50	0	0	0	0	0	0	0		
tert-Amyl methyl ether (TAME)	ND	10	0	0	0	0	0	0	0		
tert-Butylbenzene	ND	10	0	0	0	0	0	0	0		
Tetrachloroethene	ND	10	0	0	0	0	0	0	0		
Toluene	ND	10	0	0	0	0	0	0	0		
trans-1,2-Dichloroethene	ND	10	0	0	0	0	0	0	0		
trans-1,3-Dichloropropene	ND	10	0	0	0	0	0	0	0		
Trichloroethene	1.7	10	0	0	0	0	0	0	0		J
Trichlorofluoromethane	ND	10	0	0	0	0	0	0	0		
Vinyl chloride	ND	10	0	0	0	0	0	0	0		
Xylenes, Total	ND	10	0	0	0	0	0	0	0		

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Sample ID BLANK-1D	SampType: MBLK	TestCoo	de: 8260_S	Units: µg/Kg		Prep Dat	e: 5/22/2 0	004	Run ID: VO	CGCMS1_0	40522A
Client ID: ZZZZZ	Batch ID: R3567	TestN	lo: SW8260B			Analysis Dat	e: 5/22/2 0	004	SeqNo: 506	643	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenzene	46.04	0	50	0	92.1	65	135	0	0		
Surr: Dibromofluoromethane	50.01	0	50	0	100	65	135	0	0		
Surr: Toluene-d8	44.71	0	50	0	89.4	65	135	0	0		
Sample ID LCS-1 50 PPB	SampType: LCS	TestCod	de: 8260_S	Units: µg/Kg		Prep Dat	e: 5/22/2 0	004	Run ID: VO	CGCMS1_0	40522A
Client ID: ZZZZZ	Batch ID: R3567	TestN	lo: SW8260B			Analysis Dat	e: 5/22/2 0	004	SeqNo: 506	644	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	53.42	10	50	0	107	70	130	0	0		
Benzene	42.6	10	50	0	85.2	70	130	0	0		
Chlorobenzene	49.82	10	50	0	99.6	70	130	0	0		
Toluene	55.55	10	50	0	111	70	130	0	0		
Trichloroethene	61.06	10	50	1.7	119	70	130	0	0		
Surr: 4-Bromofluorobenzene	40.07	0	50	0	80.1	65	135	0	0		
Surr: Dibromofluoromethane	44.7	0	50	0	89.4	65	135	0	0		
Surr: Toluene-d8	50.08	0	50	0	100	65	135	0	0		
Sample ID LCSD-1 50 PPB	SampType: LCSD	TestCod	de: 8260_S	Units: µg/Kg		Prep Dat	e: 5/22/2 0	004	Run ID: VO	CGCMS1_0	40522A
Client ID: ZZZZZ	Batch ID: R3567	TestN	lo: SW8260B			Analysis Dat	e: 5/22/2 0	004	SeqNo: 506	645	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	46.17	10	50	0	92.3	70	130	53.42	14.6	30	
Benzene	38.74	10	50	0	77.5	70	130	42.6	9.49	30	
Chlorobenzene	45.53	10	50	0	91.1	70	130	49.82	9.00	30	
Toluene	49.6	10	50	0	99.2	70	130	55.55	11.3	30	
Trichloroethene	55.24	10	50	1.7	107	70	130	61.06	10.0	30	
Surr: 4-Bromofluorobenzene	37.31	0	50	0	74.6	65	135	0	0	0	
Surr: Dibromofluoromethane	41	0	50	0	82	65	135	0	0	0	

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Treadwell & Rollo **CLIENT:**

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode:	8260	S

Sample ID 0405081-017AMS	SampType: MS	TestCod	de: 8260_S	Units: µg/Kg		Prep Dat	e: 5/22/2 0	004	Run ID: VO	CGCMS1_04	40522A
Client ID: EB-8-1.5	Batch ID: R3567	TestN	lo: SW8260B			Analysis Dat	e: 5/22/2 0	004	SeqNo: 506	640	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	52.28	10	50	0	105	70	130	0	0		
Benzene	36.62	10	50	0	73.2	70	130	0	0		
Chlorobenzene	48.23	10	50	0	96.5	70	130	0	0		
Toluene	52.75	10	50	0	106	70	130	0	0		
Trichloroethene	53.6	10	50	0	107	70	130	0	0		
Surr: 4-Bromofluorobenzene	36.13	0	50	0	72.3	65	135	0	0		
Surr: Dibromofluoromethane	38.64	0	50	0	77.3	65	135	0	0		
Surr: Toluene-d8	20.78	0	50	0	41.6	65	135	0	0		S
Sample ID 0405081-017AMSD	SampType: MSD	TestCod	de: 8260_S	Units: µg/Kg		Prep Dat	e: 5/22/2 0	004	Run ID: VO	CGCMS1_04	40522A
Sample ID 0405081-017AMSD Client ID: EB-8-1.5	SampType: MSD Batch ID: R3567		de: 8260_S No: SW8260B			Prep Dat Analysis Dat			Run ID: VO SeqNo: 506	_	40522A
			lo: SW8260B		%REC	Analysis Dat	e: 5/22/2 0			_	40522A Qual
Client ID: EB-8-1.5	Batch ID: R3567	TestN	lo: SW8260B			Analysis Dat	e: 5/22/2 0	004	SeqNo: 506	641	
Client ID: EB-8-1.5 Analyte	Batch ID: R3567 Result	TestN PQL	No: SW8260B SPK value	SPK Ref Val	%REC	Analysis Dat	e: 5/22/20 HighLimit	RPD Ref Val	SeqNo: 500 %RPD	641 RPDLimit	
Client ID: EB-8-1.5 Analyte 1,1-Dichloroethene	Batch ID: R3567 Result 55.06	TestN PQL 10	SPK value	SPK Ref Val	%REC	Analysis Dat LowLimit 70	e: 5/22/20 HighLimit	RPD Ref Val 52.28	SeqNo: 506 %RPD 5.18	RPDLimit 30	
Client ID: EB-8-1.5 Analyte 1,1-Dichloroethene Benzene	Batch ID: R3567 Result 55.06 40.24	PQL 10 10	SPK value 50 50	SPK Ref Val 0 0	%REC 110 80.5	Analysis Dat LowLimit 70 70	e: 5/22/20 HighLimit 130 130	RPD Ref Val 52.28 36.62	SeqNo: 500 %RPD 5.18 9.42	RPDLimit 30 30	
Client ID: EB-8-1.5 Analyte 1,1-Dichloroethene Benzene Chlorobenzene	Batch ID: R3567 Result 55.06 40.24 51.07	TestN PQL 10 10 10	SPK value 50 50 50	SPK Ref Val 0 0 0	%REC 110 80.5 102	Analysis Date LowLimit 70 70 70	HighLimit 130 130 130	RPD Ref Val 52.28 36.62 48.23	SeqNo: 500 %RPD 5.18 9.42 5.72	RPDLimit 30 30 30 30	
Client ID: EB-8-1.5 Analyte 1,1-Dichloroethene Benzene Chlorobenzene Toluene	Batch ID: R3567 Result 55.06 40.24 51.07 55	TestN PQL 10 10 10 10	SPK value 50 50 50 50	SPK Ref Val 0 0 0 0	%REC 110 80.5 102 110	Analysis Date LowLimit 70 70 70 70 70	HighLimit 130 130 130 130	52.28 36.62 48.23 52.75	SeqNo: 500 %RPD 5.18 9.42 5.72 4.18	RPDLimit 30 30 30 30 30	
Client ID: EB-8-1.5 Analyte 1,1-Dichloroethene Benzene Chlorobenzene Toluene Trichloroethene	Batch ID: R3567 Result 55.06 40.24 51.07 55 59.72	TestN PQL 10 10 10 10 10	SPK value 50 50 50 50 50 50	SPK Ref Val 0 0 0 0 0 0	%REC 110 80.5 102 110 119	Analysis Date LowLimit 70 70 70 70 70 70 70	HighLimit 130 130 130 130 130 130	52.28 36.62 48.23 52.75 53.6	SeqNo: 500 %RPD 5.18 9.42 5.72 4.18 10.8	RPDLimit 30 30 30 30 30 30 30 30	

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Sample ID BLANK2	SampType: MBLK	TestCode: 8260_W	Units: µg/L	Prep Date: 5/21/2004	Run ID: VOCGCMS1_040521A
Client ID: ZZZZZ	Batch ID: R3545	TestNo: SW8260E	3	Analysis Date: 5/21/2004	SeqNo: 50382
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,1,1,2-Tetrachloroethane	ND	1.0			
1,1,1-Trichloroethane	ND	1.0			
1,1,2,2-Tetrachloroethane	ND	1.0			
1,1,2-Trichloroethane	ND	1.0			
1,1-Dichloroethane	ND	1.0			
1,1-Dichloroethene	ND	1.0			
1,1-Dichloropropene	ND	1.0			
1,2,3-Trichlorobenzene	ND	2.0			
1,2,3-Trichloropropane	ND	1.0			
1,2,4-Trichlorobenzene	ND	2.0			
1,2,4-Trimethylbenzene	ND	1.0			
1,2-Dibromo-3-chloropropane	ND	2.0			
1,2-Dibromoethane (EDB)	ND	1.0			
1,2-Dichlorobenzene	ND	1.0			
1,2-Dichloroethane (EDC)	ND	1.0			
1,2-Dichloropropane	ND	1.0			
1,3,5-Trimethylbenzene	ND	1.0			
1,3-Dichlorobenzene	ND	1.0			
1,3-Dichloropropane	ND	1.0			
1,4-Dichlorobenzene	ND	1.0			
2,2-Dichloropropane	ND	1.0			
2-Chloroethyl vinyl ether	ND	1.0			
2-Chlorotoluene	ND	1.0			
4-Chlorotoluene	ND	1.0			
4-Isopropyltoluene	ND	1.0			
Benzene	ND	1.0			
Bromobenzene	ND	1.0			
Bromochloromethane	ND	1.0			
Bromodichloromethane	ND	1.0			
Bromoform	ND	2.0			
Bromomethane	ND	1.0			

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Sample ID BLANK2	SampType: MBLK	TestCoo	de: 8260_W	Units: µg/L		Prep Da	te: 5/21/2	004	Run ID: VO	CGCMS1_0	40521A
Client ID: ZZZZZ	Batch ID: R3545	TestN	lo: SW8260B			Analysis Da	te: 5/21/2	004	SeqNo: 50	382	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon tetrachloride	ND	1.0									
Chlorobenzene	ND	1.0									
Chloroform	ND	1.0									
Chloromethane	ND	1.0									
cis-1,2-Dichloroethene	ND	1.0									
Dibromochloromethane	ND	1.0									
Dibromomethane	ND	1.0									
Dichlorodifluoromethane	ND	1.0									
Ethyl tert-butyl ether (ETBE)	ND	1.0									
Ethylbenzene	ND	1.0									
Freon-113	ND	1.0									
Hexachlorobutadiene	ND	2.0									
Isopropyl ether (IPE)	ND	1.0									
Isopropylbenzene	ND	1.0									
Methyl tert-butyl ether (MTBE)	ND	1.0									
Methylene chloride	ND	1.0									
Naphthalene	ND	2.0									
n-Butylbenzene	ND	1.0									
n-Propylbenzene	ND	1.0									
sec-Butylbenzene	ND	1.0									
Styrene	ND	1.0									
t-Butyl alcohol (t-Butanol)	ND	30									
tert-Amyl methyl ether (TAME)	ND	1.0									
tert-Butylbenzene	ND	1.0									
Tetrachloroethene	ND	1.0									
Toluene	ND	1.0									
trans-1,2-Dichloroethene	ND	1.0									
trans-1,3-Dichloropropene	ND	1.0									
Trichloroethene	ND	2.0									
Trichlorofluoromethane	ND	1.0									
Vinyl chloride	ND	1.0									

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Treadwell & Rollo **CLIENT:**

Work Order: 0405081

Project:

Sample ID BLANK2	SampType:	MBLK	TestCoo	le: 8260_W	Units: µg/L		Prep Dat	te: 5/21/2 0	004	Run ID: VO	CGCMS1_0	40521A
Client ID: ZZZZZ	Batch ID:	R3545	TestN	lo: SW8260B			Analysis Da	te: 5/21/2 0	004	SeqNo: 503	382	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Xylenes, Total		ND	1.0									
Surr: 4-Bromofluorobenzene		14.59	0	17.86	0	81.7	75	125	0	0		
Surr: Dibromofluoromethane		17.03	0	17.86	0	95.3	75	125	0	0		
Surr: Toluene-d8		17.55	0	17.86	0	98.3	75	125	0	0		
Sample ID LCS-1	SampType:	LCS	TestCoo	le: 8260_W	Units: µg/L		Prep Dat	te: 5/21/2 0	004	Run ID: VO	CGCMS1_0	40521A
Client ID: ZZZZZ	Batch ID:	R3545	TestN	lo: SW8260B			Analysis Da	te: 5/21/2 0	004	SeqNo: 503	383	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene		18.31	1.0	17.86	0	103	75	125	0	0		
Benzene		19.54	1.0	17.86	0	109	75	125	0	0		
Chlorobenzene		18.06	1.0	17.86	0	101	75	125	0	0		
Toluene		19.37	1.0	17.86	0	108	75	125	0	0		
Trichloroethene		20.93	2.0	17.86	0	117	75	125	0	0		
Surr: 4-Bromofluorobenzene		14.82	0	17.86	0	83	75	125	0	0		
Surr: Dibromofluoromethane		17	0	17.86	0	95.2	75	125	0	0		
Surr: Toluene-d8		18.29	0	17.86	0	102	75	125	0	0		
Sample ID LCS-2	SampType:	LCSD	TestCoo	le: 8260_W	Units: µg/L		Prep Dat	te: 5/21/2 0	004	Run ID: VO	CGCMS1_0	40521A
Client ID: ZZZZZ	Batch ID:	R3545	TestN	lo: SW8260B			Analysis Da	te: 5/21/2 0	004	SeqNo: 50	384	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene		17.79	1.0	17.86	0	99.6	75	125	18.31	2.91	30	
Benzene		18.7	1.0	17.86	0	105	75	125	19.54	4.41	30	
Chlorobenzene		17.81	1.0	17.86	0	99.7	75	125	18.06	1.37	30	
Toluene		18.38	1.0	17.86	0	103	75	125	19.37	5.29	30	
Trichloroethene		20.02	2.0	17.86	0	112	75	125	20.93	4.44	30	
Surr: 4-Bromofluorobenzene		14.2	0	17.86	0	79.5	75	125	0	0	0	
Surr: Dibromofluoromethane		16.27	0	17.86	0	91.1	75	125	0	0	0	
Surr: Toluene-d8		17.18	0	17.86	0	96.2	75	125	0	0	0	

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8270_S

Sample ID MB-R3561	SampType: MBLK	TestCode: 827	70_s Units: mg/Kg	Prep Da	te: 5/19/2004	Run ID: SVOC_GCMS	S1_040522
Client ID: ZZZZZ	Batch ID: R3561	TestNo: SV	V8270C	Analysis Da	te: 5/22/2004	SeqNo: 50573	
Analyte	Result	PQL SPK	value SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimi	t Qual
1,2,4-Trichlorobenzene	ND	0.33					
1,2-Dichlorobenzene	ND	0.33					
1,3-Dichlorobenzene	ND	0.33					
1,4-Dichlorobenzene	ND	0.33					
2,4,5-Trichlorophenol	ND	0.33					
2,4,6-Trichlorophenol	ND	0.33					
2,4-Dichlorophenol	ND	0.33					
2,4-Dimethylphenol	ND	0.66					
2,4-Dinitrophenol	ND	1.7					
2,4-Dinitrotoluene	ND	0.33					
2,6-Dinitrotoluene	ND	0.33					
2-Chloronaphthalene	ND	0.33					
2-Chlorophenol	ND	0.33					
2-Methylnaphthalene	ND	0.33					
2-Methylphenol	ND	0.33					
2-Nitroaniline	ND	0.33					
2-Nitrophenol	ND	0.66					
3,3'-Dichlorobenzidine	ND	1.7					
3-Methylphenol	ND	0.33					
3-Nitroaniline	ND	0.33					
4,6-Dinitro-2-methylphenol	ND	0.33					
4-Bromophenyl phenyl ether	ND	0.33					
4-Chloro-3-methylphenol	ND	0.33					
4-Chloroaniline	ND	0.33					
4-Chlorophenyl phenyl ether	ND	0.33					
4-Methylphenol	ND	0.33					
4-Nitroaniline	ND	0.33					
4-Nitrophenol	ND	0.33					
Acenaphthene	ND	0.33					
Acenaphthylene	ND	0.33					
Aniline	ND	0.33					

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8270_S

Sample ID MB-R3561	SampType: MBLK	TestCode: 8270_s	Units: mg/Kg	Prep Date: 5/19/2004	Run ID: SVOC_GCMS1_040522
Client ID: ZZZZZ	Batch ID: R3561	TestNo: SW8270	С	Analysis Date: 5/22/2004	SeqNo: 50573
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Anthracene	ND	0.33			
Benz(a)anthracene	ND	0.33			
Benzidine	ND	3.3			
Benzo(a)pyrene	ND	0.33			
Benzo(b)fluoranthene	ND	0.33			
Benzo(g,h,i)perylene	ND	0.33			
Benzo(k)fluoranthene	ND	0.33			
Benzoic acid	ND	6.7			
Benzyl alcohol	ND	6.7			
Bis(2-chloroethoxy)methane	ND	0.33			
Bis(2-chloroethyl)ether	ND	0.33			
Bis(2-chloroisopropyl)ether	ND	0.33			
Bis(2-ethylhexyl)phthalate	ND	0.33			
Butyl benzyl phthalate	ND	0.33			
Chrysene	ND	0.66			
Dibenz(a,h)anthracene	ND	0.33			
Dibenzofuran	ND	0.33			
Diethyl phthalate	ND	0.33			
Dimethyl phthalate	ND	0.33			
Di-n-butyl phthalate	ND	0.33			
Di-n-octyl phthalate	ND	0.33			
Fluoranthene	ND	0.33			
Fluorene	ND	0.33			
Hexachlorobenzene	ND	0.33			
Hexachlorobutadiene	ND	0.33			
Hexachlorocyclopentadiene	ND	0.33			
Hexachloroethane	ND	0.33			
Indeno(1,2,3-cd)pyrene	ND	0.33			
Isophorone	ND	0.33			
Naphthalene	ND	0.33			
Nitrobenzene	ND	0.33			

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8270_S

Sample ID MB-R3561	SampType: MBLK	TestCod	de: 8270_s	Units: mg/Kg		Prep Date	e: 5/19/2 0	004	Run ID: SV	OC_GCMS1	_040522
Client ID: ZZZZZ	Batch ID: R3561	TestN	lo: SW8270C			Analysis Date	e: 5/22/20	004	SeqNo: 50	573	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
N-Nitrosodimethylamine	ND	0.33									
N-Nitrosodi-n-propylamine	ND	0.33									
N-Nitrosodiphenylamine	ND	0.33									
Pentachlorophenol	ND	0.33									
Phenanthrene	ND	0.33									
Phenol	ND	0.33									
Pyrene	ND	0.33									
Pyridine	ND	0.33									
Surr: 2,4,6-Tribromophenol	51.07	0	100	0	51.1	19	122	0	0		
Surr: 2-Fluorobiphenyl	71.51	0	100	0	71.5	24	90	0	0		
Surr: 2-Fluorophenol	74.62	0	100	0	74.6	25	121	0	0		
Surr: Nitrobenzene-d5	62.78	0	100	0	62.8	17	96	0	0		
Surr: Phenol-d6	81.96	0	100	0	82	16	91	0	0		
Surr: p-Terphenyl-d14	86.38	0	100	0	86.4	49	138	0	0		
Sample ID LCS-R3561	SampType: LCS	TestCod	de: 8270_s	Units: mg/Kg		Prep Date	e: 5/19/2 0	004	Run ID: SV	OC_GCMS1	_040522
Client ID: ZZZZZ	Batch ID: R3561	TestN	lo: SW8270C			Analysis Date	e: 5/22/20	004	SeqNo: 50	574	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	0.613	0.33	1.25	0	49	30	107	0	0		
1,4-Dichlorobenzene	0.696	0.33	1.25	0	55.7	28	104	0	0		
2,4-Dinitrotoluene	0.505	0.33	1.25	0	40.4	23.9	85	0	0		
2-Chlorophenol	1.453	0.33	2.5	0	58.1	22.7	85.1	0	0		
4-Chloro-3-methylphenol	1.331	0.33	2.5	0	53.2	26	103	0	0		
4-Nitrophenol	0.505	0.33	2.5	0	20.2	20	120	0	0		
Acenaphthene	0.668	0.33	1.25	0	53.4	20.1	108	0	0		
N-Nitrosodimethylamine	0.358	0.33	1.25	0	28.6	20.2	126	0	0		
Pentachlorophenol	0.891	0.33	2.5	0	35.6	14.9	93.8	0	0		
Phenol	1.399	0.33	2.5	0	56	19	90	0	0		
Pyrene	0.819	0.33	1.25	0	65.5	35	142	0	0		
Surr: 2,4,6-Tribromophenol	52.73	0	100	0	52.7	19	122	0	0		

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode:	8270	S

Sample ID LCS-R3561	SampType: LCS	TestCo	de: 8270_s	Units: mg/Kg		Prep Date	e: 5/19/2 0	004	Run ID: SV	OC_GCMS1	_04052
Client ID: ZZZZZ	Batch ID: R3561	Test	No: SW8270C			Analysis Dat	e: 5/22/20	004	SeqNo: 50	574	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 2-Fluorobiphenyl	55.23	0	100	0	55.2	24	90	0	0		
Surr: 2-Fluorophenol	54.42	0	100	0	54.4	25	121	0	0		
Surr: Nitrobenzene-d5	46.95	0	100	0	47	17	96	0	0		
Surr: Phenol-d6	60.9	0	100	0	60.9	16	91	0	0		
Surr: p-Terphenyl-d14	78.41	0	100	0	78.4	49	138	0	0		
Sample ID BLKSPKD	SampType: LCSD	TestCo	de: 8270_S	Units: mg/Kg		Prep Dat	e: 5/19/2 0	004	Run ID: SV	OC_GCMS1	_04052
Client ID: ZZZZZ	Batch ID: R3561	Test	No: SW8270C			Analysis Dat	e: 5/22/2 0	004	SeqNo: 50	583	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	0.575	0.33	1.25	0	46	30	107	0.613	6.40	30	
1,4-Dichlorobenzene	0.662	0.33	1.25	0	53	28	104	0.696	5.01	32	
2,4-Dinitrotoluene	0.499	0.33	1.25	0	39.9	23.9	85	0.505	1.20	30	
2-Chlorophenol	1.319	0.33	2.5	0	52.8	22.7	85.1	1.453	9.67	30	
4-Chloro-3-methylphenol	1.159	0.33	2.5	0	46.4	26	103	1.331	13.8	37	
4-Nitrophenol	0.662	0.33	2.5	0	26.5	20	120	0.505	26.9	47	
Acenaphthene	0.59	0.33	1.25	0	47.2	20.1	108	0.668	12.4	30	
N-Nitrosodimethylamine	0.318	0	1.25	0	25.4	20.2	126	0.358	11.8	55	
Pentachlorophenol	0.817	0.33	2.5	0	32.7	14.9	93.8	0.891	8.67	49	
Phenol	1.283	0.33	2.5	0	51.3	19	90	1.399	8.65	30	
Pyrene	0.859	0.33	1.25	0	68.7	35	142	0.819	4.77	30	
Surr: 2,4,6-Tribromophenol	47.81	0	100	0	47.8	19	122	0	0	0	
Surr: 2-Fluorobiphenyl	49.44	0	100	0	49.4	24	90	0	0	0	
Surr: 2-Fluorophenol	49.69	0	100	0	49.7	25	121	0	0	0	
Surr: Nitrobenzene-d5	43.4	0	100	0	43.4	17	96	0	0	0	
Surr: Phenol-d6	55.02	0	100	0	55	16	91	0	0	0	
Surr: p-Terphenyl-d14	82.87	0	100	0	82.9	49	138	0	0	0	

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8270_S

Sample ID 0405081-020AMS	SampType: MS	TestCod	de: 8270_S	Units: mg/Kg		Prep Date	e: 5/19/20	04	Run ID: SV	OC_GCMS1	_040522
Client ID: EB-5-1.5	Batch ID: R3561	TestN	lo: SW8270C	;		Analysis Date	e: 5/22/20	04	SeqNo: 50	576	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	0.862	0.33	1.25	0	69	30	107	0	0		
1,4-Dichlorobenzene	0.979	0.33	1.25	0	78.3	28	104	0	0		
2,4-Dinitrotoluene	0.735	0.33	1.25	0	58.8	23.9	85	0	0		
2-Chlorophenol	1.948	0.33	2.5	0	77.9	22.7	85.1	0	0		
4-Chloro-3-methylphenol	1.903	0.33	2.5	0	76.1	26	103	0	0		
4-Nitrophenol	0.744	0.33	2.5	0	29.8	20	120	0	0		
Acenaphthene	0.949	0.33	1.25	0	75.9	20.1	108	0	0		
N-Nitrosodimethylamine	0.486	0.33	1.25	0	38.9	20.2	126	0	0		
Pentachlorophenol	1.871	0.33	2.5	0	74.8	14.9	93.8	0	0		
Phenol	1.994	0.33	2.5	0	79.8	19	90	0	0		
Pyrene	1.06	0.33	1.25	0	84.8	35	142	0	0		
Surr: 2,4,6-Tribromophenol	85.88	0	100	0	85.9	19	122	0	0		
Surr: 2-Fluorobiphenyl	83.38	0	100	0	83.4	24	90	0	0		
Surr: 2-Fluorophenol	79.15	0	100	0	79.2	25	121	0	0		
Surr: Nitrobenzene-d5	74.66	0	100	0	74.7	17	96	0	0		
Surr: Phenol-d6	90.31	0	100	0	90.3	16	91	0	0		
Surr: p-Terphenyl-d14	98.79	0	100	0	98.8	49	138	0	0		
Sample ID 0405081-020AMSD	SampType: MSD	TestCod	de: 8270_S	Units: mg/Kg		Prep Date	e: 5/19/2 0	04	Run ID: SV	OC_GCMS1	_040522
Sample ID 0405081-020AMSD Client ID: EB-5-1.5	SampType: MSD Batch ID: R3561		de: 8270_S No: SW8270C			Prep Date Analysis Date			Run ID: SV SeqNo: 50		_040522
,			lo: SW8270C		%REC	Analysis Date	e: 5/22/20				_ 040522 Qual
Client ID: EB-5-1.5	Batch ID: R3561	TestN	lo: SW8270C	;		Analysis Date	e: 5/22/20	04	SeqNo: 50	577	Qual
Client ID: EB-5-1.5 Analyte	Batch ID: R3561 Result	TestN PQL	No: SW8270C SPK value	SPK Ref Val	%REC	Analysis Date	e: 5/22/20 HighLimit	04 RPD Ref Val	SeqNo: 50 9	577 RPDLimit	
Client ID: EB-5-1.5 Analyte 1,2,4-Trichlorobenzene	Batch ID: R3561 Result 0.495	TestN PQL 0.33	SPK value	SPK Ref Val	%REC 39.6	Analysis Date LowLimit	e: 5/22/20 HighLimit	RPD Ref Val	SeqNo: 50 9 %RPD 54.1	RPDLimit 30	Qual R
Client ID: EB-5-1.5 Analyte 1,2,4-Trichlorobenzene 1,4-Dichlorobenzene	Batch ID: R3561 Result 0.495 0.534	PQL 0.33 0.33	SPK value 1.25 1.25	SPK Ref Val 0 0	%REC 39.6 42.7	Analysis Date LowLimit 30 28	e: 5/22/20 HighLimit 107 104	04 RPD Ref Val 0.862 0.979	SeqNo: 50 8 %RPD 54.1 58.8	877 RPDLimit 30 32	Qual R R
Client ID: EB-5-1.5 Analyte 1,2,4-Trichlorobenzene 1,4-Dichlorobenzene 2,4-Dinitrotoluene	Result 0.495 0.534 1.121	PQL 0.33 0.33 0.33	SPK value 1.25 1.25 1.25	SPK Ref Val 0 0 0	%REC 39.6 42.7 89.7	Analysis Date LowLimit 30 28 23.9	e: 5/22/20 HighLimit 107 104 85	04 RPD Ref Val 0.862 0.979 0.735	SeqNo: 50 8 %RPD 54.1 58.8 41.6	8PDLimit 30 32 30	Qual R R R SR
Client ID: EB-5-1.5 Analyte 1,2,4-Trichlorobenzene 1,4-Dichlorobenzene 2,4-Dinitrotoluene 2-Chlorophenol	Batch ID: R3561 Result 0.495 0.534 1.121 1.121	PQL 0.33 0.33 0.33 0.33	SPK value 1.25 1.25 1.25 2.5	SPK Ref Val 0 0 0 0	%REC 39.6 42.7 89.7 44.8	Analysis Date LowLimit 30 28 23.9 22.7	HighLimit 107 104 85 85.1	0.862 0.979 0.735 1.948	SeqNo: 50 8 %RPD 54.1 58.8 41.6 53.9	8PDLimit 30 32 30 30 30	Qual R R R SR
Client ID: EB-5-1.5 Analyte 1,2,4-Trichlorobenzene 1,4-Dichlorobenzene 2,4-Dinitrotoluene 2-Chlorophenol 4-Chloro-3-methylphenol	Batch ID: R3561 Result 0.495 0.534 1.121 1.121 1.369	PQL 0.33 0.33 0.33 0.33 0.33 0.33	SPK value 1.25 1.25 2.5	SPK Ref Val 0 0 0 0 0 0	%REC 39.6 42.7 89.7 44.8 54.8	Analysis Date LowLimit 30 28 23.9 22.7 26	HighLimit 107 104 85 85.1 103	04 RPD Ref Val 0.862 0.979 0.735 1.948 1.903	SeqNo: 50 8 %RPD 54.1 58.8 41.6 53.9 32.6	30 32 30 30 31 30 30	Qual R R R SR
Client ID: EB-5-1.5 Analyte 1,2,4-Trichlorobenzene 1,4-Dichlorobenzene 2,4-Dinitrotoluene 2-Chlorophenol 4-Chloro-3-methylphenol 4-Nitrophenol	Batch ID: R3561 Result 0.495 0.534 1.121 1.121 1.369 0.592	PQL 0.33 0.33 0.33 0.33 0.33 0.33	SPK value 1.25 1.25 2.5 2.5 2.5	SPK Ref Val 0 0 0 0 0 0 0	%REC 39.6 42.7 89.7 44.8 54.8 23.7	Analysis Date LowLimit 30 28 23.9 22.7 26 20	HighLimit 107 104 85 85.1 103 120	04 RPD Ref Val 0.862 0.979 0.735 1.948 1.903 0.744	SeqNo: 50 8 %RPD 54.1 58.8 41.6 53.9 32.6 22.8	30 32 30 30 30 37 47	Qual R R R SR R

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order: 0405081

Project:

Sample ID 0405081-020AMSD	SampType: MSD	TestCoo	de: 8270_S	Units: mg/Kg		Prep Dat	e: 5/19/2 0	004	Run ID: SV	OC_GCMS1	_040522
Client ID: EB-5-1.5	Batch ID: R3561	TestN	lo: SW8270C			Analysis Dat	e: 5/22/20	004	SeqNo: 50	577	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenol	1.173	0.33	2.5	0	46.9	19	90	1.994	51.8	30	R
Pyrene	0.754	0.33	1.25	0	60.3	35	142	1.06	33.7	30	R
Surr: 2,4,6-Tribromophenol	64.91	0	100	0	64.9	19	122	0	0	0	
Surr: 2-Fluorobiphenyl	48.99	0	100	0	49	24	90	0	0	0	
Surr: 2-Fluorophenol	43.71	0	100	0	43.7	25	121	0	0	0	
Surr: Nitrobenzene-d5	42.55	0	100	0	42.6	17	96	0	0	0	
Surr: Phenol-d6	52.87	0	100	0	52.9	16	91	0	0	0	
Surr: p-Terphenyl-d14	71.46	0	100	0	71.5	49	138	0	0	0	

ANALYTICAL QC SUMMARY REPORT

TestCode: 8270_S

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: HG_CTS

Sample ID	MB-763	SampType:	MBLK	TestCode: HG_CTS	Units: mg/Kg	Prep Date: 5/20/2004	Run ID: AA-VGA_040521B
Client ID:	ZZZZZ	Batch ID:	763	TestNo: SW7471A	(SW7471APR	Analysis Date: 5/21/2004	SeqNo: 50288
Analyte			Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury			ND	0.098			
Sample ID	MB-765	SampType:	MBLK	TestCode: HG_CTS	Units: mg/Kg	Prep Date: 5/21/2004	Run ID: AA-VGA_040524B
Client ID:	ZZZZZ	Batch ID:	765	TestNo: SW7471A	(SW7471APR	Analysis Date: 5/24/2004	SeqNo: 50440
Analyte			Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury			ND	0.086			
Sample ID	LCS-763	SampType:	LCS	TestCode: HG_CTS	Units: mg/Kg	Prep Date: 5/20/2004	Run ID: AA-VGA_040521B
Client ID:	ZZZZZ	Batch ID:	763	TestNo: SW7471A	(SW7471APR	Analysis Date: 5/21/2004	SeqNo: 50289
Analyte			Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury			2.433	0.10 2.5	0	97.3 80 120 0	0
Sample ID	LCS-765	SampType:	LCS	TestCode: HG_CTS	Units: mg/Kg	Prep Date: 5/21/2004	Run ID: AA-VGA_040524B
Client ID:	ZZZZZ	Batch ID:	765	TestNo: SW7471A	(SW7471APR	Analysis Date: 5/24/2004	SeqNo: 50441
Analyte			Result	DOI ODK	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	0/ DDD DDDI insit Overl
Mercury			Nesuit	PQL SPK value	SER NEI Vai	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
- IVIETCUTY			2.5	0.10 2.5	0	100 80 120 0	%RPD RPDLIMIT Qual
	LCSD-763	SampType:	2.5			<u>-</u>	
		SampType: Batch ID:	2.5	0.10 2.5	0 Units: mg/Kg	100 80 120 0	0
Sample ID			2.5	0.10 2.5 TestCode: HG_CTS TestNo: SW7471A	0 Units: mg/Kg	100 80 120 0 Prep Date: 5/20/2004	0 Run ID: AA-VGA_040521B
Sample ID Client ID:			2.5 LCSD 763	0.10 2.5 TestCode: HG_CTS TestNo: SW7471A	Units: mg/Kg (SW7471APR	100 80 120 0 Prep Date: 5/20/2004 Analysis Date: 5/21/2004	0 Run ID: AA-VGA_040521B SeqNo: 50305
Sample ID Client ID: Analyte Mercury			2.5 LCSD 763 Result 2.467	0.10 2.5 TestCode: HG_CTS TestNo: SW7471A PQL SPK value	Units: mg/Kg (SW7471APR SPK Ref Val	100 80 120 0 Prep Date: 5/20/2004 Analysis Date: 5/21/2004 %REC LowLimit HighLimit RPD Ref Val	0 Run ID: AA-VGA_040521B SeqNo: 50305 %RPD RPDLimit Qual
Sample ID Client ID: Analyte Mercury	LCSD-765	Batch ID:	2.5 LCSD 763 Result 2.467 LCSD	0.10 2.5 TestCode: HG_CTS TestNo: SW7471A PQL SPK value 0.10 2.5	Units: mg/Kg (SW7471APR SPK Ref Val 0 Units: mg/Kg	100 80 120 0 Prep Date: 5/20/20∪4 Analysis Date: 5/21/20∪4 %REC LowLimit HighLimit RPD Ref Val 98.7 80 120 2.433	0 Run ID: AA-VGA_040521B SeqNo: 50305 %RPD RPDLimit Qual 1.36 30

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order: 0405081

Project:

Sample ID Client ID:		SampType: LCSD Batch ID: 765	TestCode: F	_	Units: mg/Kg (SW7471APR		Prep Date: Analysis Date:			Run ID: AA SeqNo: 504	-VGA_04052 160	4B
Analyte		Resul	t PQL SF	YK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		2.567	0.10	2.5	0	103	80	120	2.5	2.63	30	
Sample ID	0405079-012AMS	SampType: MS	TestCode: F	IG_CTS	Units: mg/Kg		Prep Date:	5/20/20	04	Run ID: AA	-VGA_04052	1B
Client ID:	ZZZZZ	Batch ID: 763	TestNo: S	W7471A	(SW7471APR		Analysis Date:	5/21/20	04	SeqNo: 503	306	
Analyte		Resul	t PQL SF	K value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		2.27	0.095	2.381	0.06098	92.8	80	120	0	0		
Sample ID	0405088-007AMS	SampType: MS	TestCode: F	IG_CTS	Units: mg/Kg		Prep Date:	5/20/20	04	Run ID: AA	-VGA_04052	1B
Client ID:	ZZZZZ	Batch ID: 763	TestNo: S	W7471A	(SW7471APR		Analysis Date:	5/21/20	04	SeqNo: 503	308	
Analyte		Resul	t PQL SF	K value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		5.2	0.20	2.5	2.576	105	80	120	0	0		
Sample ID	0405098-001AMS	SampType: MS	TestCode: F	IG_CTS	Units: mg/Kg		Prep Date:	5/21/20	04	Run ID: AA	-VGA_04052	4B
Client ID:	ZZZZZ	Batch ID: 765	TestNo: S	W7471A	(SW7471APR		Analysis Date:	5/24/20	04	SeqNo: 504	161	
Analyte		Resul	t PQL SF	K value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		2.417	0.10	2.5	0.1061	92.4	80	120	0	0		
Sample ID	0405079-012AMSD	SampType: MSD	TestCode: F	IG_CTS	Units: mg/Kg		Prep Date:	5/20/20	04	Run ID: AA	-VGA_04052	1B
Client ID:	ZZZZZ	Batch ID: 763	TestNo: S	W7471A	(SW7471APR		Analysis Date:	5/21/20	04	SeqNo: 50	307	
Analyte		Resul	t PQL SF	K value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		2.35	0.10	2.5	0.06098	91.6	80	120	2.27	3.47	30	
Sample ID	0405088-007AMSD	SampType: MSD	TestCode: F	IG_CTS	Units: mg/Kg		Prep Date:	5/20/20	04	Run ID: AA	-VGA_04052	1B
Client ID:	ZZZZZ	Batch ID: 763	TestNo: S	W7471A	(SW7471APR		Analysis Date:	5/21/20	04	SeqNo: 50	309	
Analyte		Resul	t PQL SF	K value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

Qualifiers: ND - Not Detected at the Reporting Limit

ANALYTICAL QC SUMMARY REPORT

TestCode: HG_CTS

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Work Order: 0405081

Project:

TestCode: HG_CTS

Sample ID 0405088-007AMSI	D SampType: MSD	TestCode: HG_CTS	Units: mg/Kg	Prep	Date: 5/20/2004	Run ID: AA-VGA_0405218	В
Client ID: ZZZZZ	Batch ID: 763	TestNo: SW7471A	(SW7471APR	Analysis	Date: 5/21/2004	SeqNo: 50309	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLin	nit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	4.909	0.18 2.273	2.576	103	30 120 5.2	5.76 30	
Sample ID 0405098-001AMSI	D SampType: MSD	TestCode: HG_CTS	Units: mg/Kg	Prep	Date: 5/21/2004	Run ID: AA-VGA_040524	В
Sample ID 0405098-001AMSI Client ID: ZZZZZ	D SampType: MSD Batch ID: 765	TestCode: HG_CTS TestNo: SW7471A	0 0	Prep Analysis		Run ID: AA-VGA_040524 SeqNo: 50462	В
•	1 31	_	0 0	- 1	Date: 5/24/2004	SeqNo: 50462	B Qual

ANALYTICAL QC SUMMARY REPORT

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: HG_DW

Sample ID		SampType:			e: HG_DW	Units: mg/L		Prep Date:				-VGA_04052	1A
Client ID:	ZZZZZ	Batch ID:	762	TestNo	o: E245.1	(E245.1PR)		Analysis Date:	5/21/200	04	SeqNo: 502	279	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury			ND	0.0050									
Sample ID	LCS-762	SampType:	LCS	TestCode	e: HG_DW	Units: mg/L		Prep Date:	5/20/20	04	Run ID: AA	-VGA_04052	1 A
Client ID:	ZZZZZ	Batch ID:	762	TestNo	o: E245.1	(E245.1PR)		Analysis Date:	5/21/200	04	SeqNo: 502	280	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury			0.0146	0.0050	0.015	0	97.3	80	120	0	0		
Sample ID	LCSD-762	SampType:	LCSD	TestCode	e: HG_DW	Units: mg/L		Prep Date:	5/20/20	04	Run ID: AA	-VGA_04052	1A
Client ID:	ZZZZZ	Batch ID:	762	TestNo	o: E245.1	(E245.1PR)		Analysis Date:	5/21/20	04	SeqNo: 502	285	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury			0.0148	0.0050	0.015	0	98.7	80	120	0.0146	1.36	30	
Sample ID	0405080-001AMS	SampType:	MS	TestCode	e: HG_DW	Units: mg/L		Prep Date:	5/20/200	04	Run ID: AA	-VGA_04052	1A
Client ID:	ZZZZZ	Batch ID:	762	TestNo	o: E245.1	(E245.1PR)		Analysis Date:	5/21/200	04	SeqNo: 502	286	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury			0.0149	0.0050	0.015	0	99.3	80	120	0	0		
Sample ID	0405080-001AMSD	SampType:	MSD	TestCode	e: HG_DW	Units: mg/L	·	Prep Date:	5/20/200	04	Run ID: AA	-VGA_04052	1A
Client ID:	ZZZZZ	Batch ID:	762	TestNo	o: E245.1	(E245.1PR)		Analysis Date:	5/21/20	04	SeqNo: 502	287	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury			0.0153	0.0050	0.015	0	102	80	120	0.0149	2.65	30	_

Qualifiers:

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: O&G_S_5520 MOD.

Sample ID MB-R3576	SampType: MBLK	TestCode: O&G_S_5520 Units: mg/Kg	Prep Date: 5/21/2004	Run ID: 0&G_W_040521B
Client ID: ZZZZZ	Batch ID: R3576	TestNo: SM 5520 Mod	Analysis Date: 5/21/2004	SeqNo: 50739
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Oil & Grease, Total	< 50	50		
Sample ID LCS-R3576	SampType: LCS	TestCode: O&G_S_5520 Units: mg/Kg	Prep Date: 5/21/2004	Run ID: 0&G_W_040521B
Client ID: ZZZZZ	Batch ID: R3576	TestNo: SM 5520 Mod	Analysis Date: 5/21/2004	SeqNo: 50740
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Oil & Grease, Total	1790	50 2000 0	89.5 80 120 0	0
Sample ID BLKSPKD	SampType: LCSD	TestCode: O&G_S_5520 Units: mg/Kg	Prep Date: 5/21/2004	Run ID: 0&G_W_040521B
Client ID: ZZZZZ	Batch ID: R3576	TestNo: SM 5520 Mod	Analysis Date: 5/21/2004	SeqNo: 50759
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Oil & Grease, Total	1885	50 2000 0	94.2 80 120 1790	5.17 30
Sample ID 0405081-035AN	IS SampType: MS	TestCode: O&G_S_5520 Units: mg/Kg	Prep Date: 5/21/2004	Run ID: 0&G_W_040521B
Client ID: EB-12-1.5	Batch ID: R3576	TestNo: SM 5520 Mod	Analysis Date: 5/21/2004	SeqNo: 50760
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Oil & Grease, Total	1270	50 2000 50	61 80 120 0	0 S
Sample ID 0405081-035AN	MSD SampType: MSD	TestCode: O&G_S_5520 Units: mg/Kg	Prep Date: 5/21/2004	Run ID: 0&G_W_040521B
Client ID: EB-12-1.5	Batch ID: R3576	TestNo: SM 5520 Mod	Analysis Date: 5/21/2004	SeqNo: 50761
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Oil & Grease, Total	1370	50 2000 50	66 80 120 1270	7.58 30 S

Qualifiers:

Work Order: 0405081

Project:

0403081

ANALYTICAL QC SUMMARY REPORT

TestCode: TPH_D/MO_S_8015B

Sample ID SD040521A-MB	SampType: MB		_	O_S Units: mg/Kg		Prep Date:			Run ID: SV	_)521A
Client ID: ZZZZZ	Batch ID: R35	541 TESTIN	lo: SW8015B			Analysis Date:	5/22/20	104	SeqNo: 50	321	
Analyte	Res	sult PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel)	1.7	773 2.00									J
TPH (Oil)		ND 4.00									
Surr: Pentacosane	4.7	748 0	4.8	0	98.9	50	150	0	0		
Sample ID SD040522A-MB	SampType: MB	LK TestCod	le: TPH_D/M	O_S Units: mg/Kg		Prep Date:	5/21/20	04	Run ID: SV	OCGC1_040)521B
Client ID: ZZZZZ	Batch ID: R35	586 TestN	lo: SW8015B			Analysis Date:	5/25/20	04	SeqNo: 509	923	
Analyte	Res	sult PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel)		ND 2.00									
TPH (Oil)		ND 4.00									
Surr: Pentacosane	6	3.59 0	4.8	0	137	50	150	0	0		
Sample ID SD040521A-LCS	SampType: LCS	S TestCod	le: TPH_D/M	O_S Units: mg/Kg		Prep Date:	5/21/20	04	Run ID: SV	OCGC1_040)521A
Client ID: ZZZZZ	Batch ID: R35	541 TestN	lo: SW8015B			Analysis Date:	5/22/20	04	SeqNo: 50	322	
Analyte	Res	sult PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel)	30	0.61 2.00	33.33	1.773	86.5	50	150	0	0		
Surr: Pentacosane	5.2	216 0	4.8	0	109	50	150	0	0		
Sample ID SD040522A-LCS	SampType: LCS	S TestCod	le: TPH_D/M	O_S Units: mg/Kg		Prep Date:	5/21/20	04	Run ID: SV	OCGC1_040)521B
Client ID: ZZZZZ	Batch ID: R35	586 TestN	lo: SW8015B			Analysis Date:	5/25/20	04	SeqNo: 509	924	
Analyte	Res	sult PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel)	26	6.47 2.00	33.33	0	79.4	50	150	0	0		
Surr: Pentacosane	5.9	913 0	4.8	0	123	50	150	0	0		
Sample ID SD040521A-LCSD	SampType: LCS	SD TestCod	le: TPH_D/M	O_S Units: mg/Kg		Prep Date:	5/21/20	004	Run ID: SV	OCGC1_040)521A
Client ID: ZZZZZ	Batch ID: R35	541 TestN	lo: SW8015B			Analysis Date:	5/22/20	04	SeqNo: 50	323	
Analyte	Res	sult PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: TPH_D/MO_S_8015B

Sample ID SD040521A-LCSD	SampType: LCSD	TestCoo	de: TPH_D/M	O_S Units: mg/Kg		Prep Date	e: 5/21/2 0	004	Run ID: SV	OCGC1_040)521A
Client ID: ZZZZZ	Batch ID: R3541	TestN	lo: SW8015B	;		Analysis Date	e: 5/22/2 0	004	SeqNo: 503	323	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel)	31.72	2.00	33.33	1.773	89.8	50	150	30.61	3.56	30	
Surr: Pentacosane	4.821	0	4.8	0	100	50	150	0	0	0	
Sample ID SD040522A-LCSD	SampType: LCSD	TestCoo	de: TPH_D/M	O_S Units: mg/Kg		Prep Date	e: 5/21/2 0	004	Run ID: SV	OCGC1_040)521B
Client ID: ZZZZZ	Batch ID: R3586	TestN	lo: SW8015B	•		Analysis Date	e: 5/25/20	004	SeqNo: 509	925	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel)	29.6	2.00	33.33	0	88.88	50	150	26.47	11.2	30	
Surr: Pentacosane	6.035	0	4.8	0	126	50	150	0	0	0	
Sample ID 0405077-001AMS	SampType: MS	TestCoo	de: TPH_D/M	O_S Units: mg/Kg		Prep Date	e: 5/21/2 0	004	Run ID: SV	OCGC1_040)521A
Client ID: ZZZZZ	Batch ID: R3541	TestN	lo: SW8015B	•		Analysis Date	e: 5/22/2 0	004	SeqNo: 503	325	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel)	27.43	2.00	33.33	1.259	78.5	50	150	0	0		
Surr: Pentacosane	4.324	0	4.8	0	90.1	50	150	0	0		
Sample ID 0405081-035AMS	SampType: MS	TestCod	de: TPH_D/M	O_S Units: mg/Kg		Prep Date	e: 5/21/2 0	004	Run ID: SV	OCGC1_040)521B
Client ID: EB-12-1.5	Batch ID: R3586	TestN	lo: SW8015B	}		Analysis Date	e: 5/25/20	004	SeqNo: 509	936	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel)	30.29	6.00	33.33	0	90.9	50	150	0	0		
Surr: Pentacosane	5.796	0	4.8	0	121	50	150	0	0		
Sample ID 0405077-001AMSD	SampType: MSD	TestCoo	de: TPH_D/M	O_S Units: mg/Kg		Prep Date	e: 5/21/2 0	004	Run ID: SV	OCGC1_040)521A
Client ID: ZZZZZ	Batch ID: R3541	TestN	lo: SW8015B	}		Analysis Date	e: 5/22/2 0	004	SeqNo: 50	326	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel)	29.26	2.00	33.33	1.259	84	50	150	27.43	6.46	30	
	4.117	0	4.8	0	85.8	50	150	0	0	0	

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

Work Order: 0405081

Project: TestCode: TPH_D/MO_S_8015B

Sample ID 0405081-035AMSD Client ID: EB-12-1.5	SampType: MSD Batch ID: R3586		le: TPH_D/M0 lo: SW8015B	O_S Units: mg/Kg		Prep Dat Analysis Dat	te: 5/21/20		Run ID: SV SeqNo: 509	OCGC1_0405 937	521B
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel) Surr: Pentacosane	23.44 4.392	6.00 0	33.33 4.8	0 0	70.3 91.5	50 50	150 150	30.29 0	25.5 0	30 0	

ANALYTICAL QC SUMMARY REPORT

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: TPH_D/MO_W_8015B

Sample ID WD0405081-MB	SampType: MBLK	TestCode: TPH_D/MO_ Units: mg/L	Prep Date: 5/20/2004	Run ID: SVOCGC1_040520A
Client ID: ZZZZZ	Batch ID: R3574	TestNo: SW8015B	Analysis Date: 5/21/2004	SeqNo: 50717
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH (Diesel)	0.039	0.100		J
TPH (Oil)	ND	0.400		
Surr: Pentacosane	0.191	0 0.144 0	133 50 150 0	0
Sample ID WD0405081-LCS	SampType: LCS	TestCode: TPH_D/MO_ Units: mg/L	Prep Date: 5/20/2004	Run ID: SVOCGC1_040520A
Client ID: ZZZZZ	Batch ID: R3574	TestNo: SW8015B	Analysis Date: 5/21/2004	SeqNo: 50718
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
-				
TPH (Diesel)	0.773	0.100 1 0.039	73.4 50 150 0	0
,	0.773 0.121	0.100 1 0.039 0 0.144 0	73.4 50 150 0 84 50 150 0	0 0
TPH (Diesel)				
TPH (Diesel) Surr: Pentacosane	0.121	0 0.144 0	84 50 150 0	0
TPH (Diesel) Surr: Pentacosane Sample ID WD0405081-LCSD	0.121 SampType: LCSD	0 0.144 0 TestCode: TPH_D/MO_ Units: mg/L	84 50 150 0 Prep Date: 5/20/2004	0 Run ID: SVOCGC1_040520A
TPH (Diesel) Surr: Pentacosane Sample ID WD0405081-LCSD Client ID: ZZZZZ	0.121 SampType: LCSD Batch ID: R3574	0 0.144 0 TestCode: TPH_D/MO_ Units: mg/L TestNo: SW8015B	84 50 150 0 Prep Date: 5/20/2004 Analysis Date: 5/21/2004	0 Run ID: SVOCGC1_040520A SeqNo: 50719

Work Order: 0405081

81 ANALYTICAL QC SUMMARY REPORT

Project: TestCode: TPH_GAS_S_8015B

Sample ID BLANK-4	SampType:	MBLK	TestCod	e: TPH_GAS	_S Units: mg/Kg		Prep Dat	te: 5/26/2 0	004	Run ID: VO	CGC1_0405	25C	
Client ID: ZZZZZ	Batch ID:	R3578	TestN	o: SW8015B			Analysis Date: 5/26/2004			SeqNo: 508	813		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
TPH (Gasoline)		0.019	0.100									J	
Surr: Trifluorotoluene		0.2035	0	0.2	0	102	65	135	0	0			
Sample ID BLANK-1	SampType:	MBLK	TestCod	e: TPH_GAS	_S Units: mg/Kg		Prep Dat	te: 5/27/2 0	004	Run ID: VO	CGC1_0405	27A	
Client ID: ZZZZZ	Batch ID:	R3589	TestN	o: SW8015B			Analysis Dat	te: 5/27/2 0	004	SeqNo: 50 9	993		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
TPH (Gasoline)		ND	0.100										
Surr: Trifluorotoluene		0.1843	0	0.2	0	92.2	65	135	0	0			
Sample ID LCS-2, GAS, 1000	SampType:	LCS	TestCod	e: TPH_GAS	_S Units: mg/Kg		Prep Dat	te: 5/26/2 0	004	Run ID: VO	CGC1_0405	25C	
Client ID: ZZZZZ	Batch ID:	R3578	TestN	o: SW8015B		Analysis Date: 5/26/2004				SeqNo: 50814			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
TPH (Gasoline)		1.292	0.100	1	0.019	127	65	135	0	0			
Surr: Trifluorotoluene		0.2274	0	0.2	0	114	65	135	0	0			
Sample ID LCS-1, GAS 1000	SampType:	LCS	TestCod	e: TPH_GAS	_S Units: mg/Kg		Prep Dat	te: 5/27/2 0	004	Run ID: VOCGC1_040527A			
Client ID: ZZZZZ	Batch ID:	R3589	TestN	o: SW8015B			Analysis Dat	te: 5/27/2 0	004	SeqNo: 50 9	994		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
TPH (Gasoline)		1.225	0.100	1	0	123	65	135	0	0			
Surr: Trifluorotoluene		0.2092	0	0.2	0	105	65	135	0	0			
Sample ID LCSD-2,GAS,1000	SampType:	LCSD	TestCod	e: TPH_GAS	_S Units: mg/Kg		Prep Dat	te: 5/26/2 0	004	Run ID: VO	CGC1_0405	25C	
Client ID: ZZZZZ	Batch ID:	R3578	TestN	o: SW8015B			Analysis Dat	te: 5/26/2 0	004	SeqNo: 50 8	815		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
TPH (Gasoline)		4.00	0.400	1	0.019	127	65	135	1.292	0.163	30		
Ti Ti (Gasoline)		1.29	0.100	0.2	0.019	127	65	135	1.232	0.100	30		

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: TPH_GAS_S_8015B

Sample ID LCSD-1, GAS 1000 Client ID: ZZZZZ	SampType: L Batch ID: F			TestCode: TPH_GAS_S Units: mg/Kg TestNo: SW8015B			Prep Date: 5/27/2004 Analysis Date: 5/27/2004			·			Run ID: VOCGC1_040527A SeqNo: 50995		
Analyte	1	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit Qual				
TPH (Gasoline) Surr: Trifluorotoluene	C	1.133).1995	0.100 0	1 0.2	0 0	113 99.8	65 65	135 135	1.225 0	7.85 0	30 30				
Sample ID 0405114-001AMS Client ID: ZZZZZ	SampType: N Batch ID: F			E: TPH_GAS	_		Prep Date Analysis Date			Run ID: VO SeqNo: 509	CGC1_040527A 984				
Analyte	1	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit Qual				
TPH (Gasoline) Surr: Trifluorotoluene).7176).2138	0.100 0	1 0.2	0 0	71.8 107	65 65	135 135	0 0	0 0					
Sample ID 0405114-001AMSD Client ID: ZZZZZ	SampType: N			E: TPH_GAS			Prep Date			Run ID: VO SeqNo: 509	CGC1_040527A 985				
Analyte	1	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit Qual				
TPH (Gasoline) Surr: Trifluorotoluene).7353).2145	0.100 0	1 0.2	0 0	73.5 107	65 65	135 135	0.7176 0	2.44 0	30 30				

Qualifiers:

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: TPH_GAS_W_8015B

Sample ID BLANK-1	SampType:	MBLK	TestCod	le: TPH_GAS	S_W Units: mg/L		Prep Da	te: 5/19/2 0	004	Run ID: VC	CGC1_0405	19A
Client ID: ZZZZZ	Batch ID:	R3532	TestN	lo: SW8015E	1	Analysis Date: 5/19/2004			004	SeqNo: 50250		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline)		ND	0.100									
Surr: Trifluorotoluene		0.1153	0	0.119	0	96.9	65	135	0	0		
Sample ID blank2	SampType:	MBLK	TestCod	le: TPH_GAS	S_W Units: mg/L		Prep Da	te: 6/1/20 0)4	Run ID: VC	CGC1_0406	601A
Client ID: ZZZZZ	Batch ID:	R3636	TestN	lo: SW8015 E	3		Analysis Da	te: 6/1/20 0	04	SeqNo: 51	464	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline)		ND	0.100									
Surr: Trifluorotoluene		0.1222	0	0.119	0	103	65	135	0	0		
Sample ID LCS 238.10	SampType:	LCS	TestCod	le: TPH_GAS	S_W Units: mg/L		Prep Da	te: 5/19/2 0	004	Run ID: VC	CGC1_0405	19A
Client ID: ZZZZZ	Batch ID:	R3532	TestN	lo: SW8015E	3		Analysis Da	te: 5/19/2 0	004	SeqNo: 50	251	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline)		0.2079	0.100	0.2381	0	87.3	65	135	0	0		
Surr: Trifluorotoluene		0.103	0	0.119	0	86.6	65	135	0	0		
Sample ID Lcs1GAS 238.10 pp	SampType:	LCS	TestCod	le: TPH_GAS	S_W Units: mg/L		Prep Da	te: 6/1/20 0)4	Run ID: VC	CGC1_0406	601A
Client ID: ZZZZZ	Batch ID:	R3636	TestN	lo: SW8015 E	3		Analysis Da	te: 6/1/20 0	04	SeqNo: 51	465	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline)		0.2599	0.100	0.2381	0	109	65	135	0	0		
Surr: Trifluorotoluene		0.129	0	0.119	0	108	65	135	0	0		
Sample ID LCSD 238.10	SampType:	LCSD	TestCod	le: TPH_GAS	S_W Units: mg/L		Prep Da	te: 5/19/2 0	004	Run ID: VC	CGC1_0405	19A
Client ID: ZZZZZ	Batch ID:	R3532	TestN	lo: SW8015E	3		Analysis Da	te: 5/19/2 0	004	SeqNo: 50	252	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline)		0.2647	0.100	0.2381	0	111	65	135	0.2079	24.0	30	
TFTT (Gasoline)		0.2047	0.100	0.2361	U	111	05	133	0.2073	27.0	50	

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order: 0405081

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: TPH_GAS_W_8015B

Sample ID LCSD22DGAS238.1	SampType:	LCSD	TestCod	e: TPH_GAS	S_W Units: mg/L		Prep Da	te: 6/1/20)4	Run ID: VO	CGC1_0406	01A
Client ID: ZZZZZ	Batch ID:	R3636	TestNo: SW8015B			Analysis Date: 6/1/2			04	SeqNo: 514	466	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline)		0.2794	0.100	0.2381	0	117	65	135	0.2599	7.23	30	
Surr: Trifluorotoluene		0.115	0	0.119	0	96.6	65	135	0	0	30	
Sample ID 0405089-003AMS	SampType:	MS	TestCod	e: TPH_GAS	S_W Units: mg/L		Prep Da	te: 5/19/2 0	004	Run ID: VO	CGC1_0405	19A
Client ID: ZZZZZ	Batch ID:	R3532	TestN	o: SW8015B	1		Analysis Da	te: 5/19/2 0	004	SeqNo: 502	248	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline)		0.2153	0.100	0.2381	0	90.4	65	135	0	0		
Surr: Trifluorotoluene		0.1094	0	0.119	0	91.9	65	135	0	0		
Sample ID 0405110-002AMS	SampType:	MS	TestCod	e: TPH_GAS	S_W Units: mg/L	its: mg/L Prep Date: 6/1/2004				Run ID: VOCGC1_040601A		
Client ID: ZZZZZ	Batch ID:	R3636	TestN	o: SW8015B	1	Analysis Date: 6/2/2004			04	SeqNo: 51450		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline)		0.2685	0.100	0.2381	0	113	65	135	0	0		
Surr: Trifluorotoluene		0.1202	0	0.119	0	101	65	135	0	0		
Sample ID 0405089-003AMSD	SampType:	MSD	TestCod	e: TPH_GAS	S_W Units: mg/L		Prep Da	te: 5/19/2 0	Run ID: VOCGC1_040519A			
Client ID: ZZZZZ	Batch ID:	R3532	TestN	o: SW8015B	1		Analysis Da	te: 5/19/2 (004	SeqNo: 502	249	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline)		0.2387	0.100	0.2381	0	100	65	135	0.2153	10.3	30	
Surr: Trifluorotoluene		0.1176	0	0.119	0	98.8	65	135	0	0	30	
Sample ID 0405110-002AMSD	SampType:	MSD	TestCod	e: TPH_GAS	S_W Units: mg/L		Prep Da	te: 6/1/20	04	Run ID: VO	CGC1_0406	01A
Client ID: ZZZZZ	Batch ID:	R3636	TestN	o: SW8015B			Analysis Da	te: 6/2/20	04	SeqNo: 514	451	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline)		0.2635	0.100	0.2381	0	111	65	135	0.2685	1.88	30	·
(54555)												

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

Treadwell&Rollo

CHAIN OF CUSTODY RECORD

Page 3 of 3

555 Montgomery Street, Suite 1300, San Francisco, CA 94111 Ph: 415-955-9040 / Fax: 415-955-9041 2 Theatre Square, Suite 216, Orinda CA 94563 Ph: 925-253-4980 / Fax: 925-253-4985 501 14th Street, 3rd Floor, Oakland, CA 94612 Ph: 510-874-4500 / Fax: 510-874-4507 Site Name: Analysis Requested Turnaround Job Number: Project Manager\Contact: Time Samplers: Recorder (Signature Required): Silica gel clean-up No. Containers Matrix & Preservative HCL H₂SO₄ HNO₃ Ice Other Field Sample Lab Sample No. Identification No. Date Time Remarks leni VNA Ambu Relinquished by: (Signature) Date Date Time Time 6-17-66 12-15 Relinquished by: (Signature) Received by: (Signature) Relinquished by: (Signature) Received by Lab: (Signature) Date Date Time Sent to Laboratory (Name): Method of Shipment Lab courier UPS Fed Ex Airborne Laboratory Comments/Notes: Hand Carried Private Courier (Co. Name) COC Number: 001157 White Copy - Original Yellow Copy - Laboratory Pink Copy - Field

Treadwell&Rollo

CHAIN OF CUSTODY RECORD

Page 1 of 2

Environmental and Geotechnical Consultant		Montgomery Street, S eatre Square, Suite 2											5-955-9041	-
		14th Street, 3rd Flooi												
Site Name: Milmis Li	MALLY		•	·										
Job Number: 3416.01	1)	- 			Äna	lysis	Re	que	sted				Turnaro	und
Project Manager\Contact:	ball	•		П		N		Τ.				Ī. I	Time	
Samplers: No With the Control of the		-] [418		Me		Y		۵			JAKAM	
Recorder (Signature Required):	- Andrews	No. Containers	M	7		2	Na	/[A		몵		<u> </u>	,	
<u> </u>	Matrix		图		သိုင်	に	¥F.		1	gel clean-up		constitution of success		909892427000EG
Field Sample Identification No. Date Time	Cap Sample No.	HCL H ₂ SO ₄ HNO ₃ lce Other	042	17	200 200 300	3	7	15		Silica ge	Hold	F	Remarks	
FB-6-1- 5/14	l l		XIX	X	N	N								
FR-6-45 811.	X		XX				$\overline{\ }$	4						
ER-10-1.5 / his			XX	XI.			X				T			,
1-8-10-3-5-5/14	. V			4	X		7	(
128-10× 0 8/10	V V		11	1.1			T				7			
ER-7-1.5 3/14	V V		KY		X			X			1			
12-7-3 0 5/14	ĺχ		x		∇		X							
12.7-CO 5/14	N N		X	$K_{\mathbf{K}}$			T	χ			Т			
FR-3-15 (1/4)	T X			7	$\exists x$						Т			
CR-3-3.0 14</td <td>V</td> <td></td> <td>15</td> <td>(</td> <td></td> <td>X</td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	V		15	(X	1			1				
23-50 3/14			X	X	\top		X	T						
FR3 - 15 3/14			X	1		\Box	<u>``\X</u>				T			
R7-30 (1)				X			1	X						_
KB-2-50 3/11	1 X					П	\neg	1			$\overline{}$	1		
Relinquished by: (Signature)	Date // 7	Time	Rece	ived t		gnatu				D	ate	5.17.62	Time	13.15
Relinquished by: (Signature)	Date /	Time '	Rece	ived t	y: (S	ignatu	īte)				Date		Time	
Relinquished by: (Signature)	Date	Time	Rece	eived b	y Lal	o: (Sig	natu	re)		C	Date	3	Time	
Sent to Laboratory (Name): / //// Laboratory Comments/Notes: /	ant Leikwal	i C	~~···	Har			_	rival	Lab cou		-	Fed Ex ame)	Airborne	UPS
		0 1 - 5 1 -	<i>*</i>		_	ے مامان			ald			COC No	mber 00	14455

Treadwell&Rollo

CHAIN OF CUSTODY RECORD

Page 3 of 3

555 Montgomery Street, Suite 1300, San Francisco, CA 94111 Ph: 415-955-9040 / Fax: 415-955-9041 2 Theatre Square, Suite 216, Orinda CA 94563 Ph; 925-253-4980 / Fax: 925-253-4985 501 14th Street, 3rd Floor, Oakland, CA 94612 Ph. 510-874-4500 / Fax: 510-874-4507 Site Name: Analysis Requested Turnaround Job Number: Project Manager\Contact: Samplers: Recorder (Signature Required): Silica gel clean-up No. Containers & Preservative Field Sample Identification No. Date Lab Sample No. Time Remarks POL Vn Ac Ambir Relinquished by: (Signature) Date Date Time Received by: (Signature) 5-17.06 12.37 Relinquished by: (Signature) Received by: (Signature) Date Time Relinquished by: (Signature) Date Time Received by Lab: (Signature) Date Time Sent to Laboratory (Name): Method of Shipment Lab courier Fed Ex Airborne UPS Laboratory Comments/Notes: Hand Carried Private Courier (Co. Name) COC Number: 001157 White Copy - Original Yellow Copy - Laboratory Pink Copy - Field

Treadwell Rollo

CHAIN OF CUSTODY RECORD

Page 2 of 3

Environmental and Geotechnical Consultant	2 Th	eatre Square, Suite 2	Suite 1300, San Francisco, CA 94111 16, Orinda CA 94563 Ph: 925-253-49	980 / Fax: 925-253-4985	15-955-9041
Site Name: Job Number:	[14th Street, 3rd Floo —	r, Oakland, CA 94612 Ph: 510-874-45		Turnaround
Project Manager\Contact: Samplers: Recorder (Signature Required):	isa cic	No Containers	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	aan-up	Han/Kill
Field Sample Identification No. Date Time	Lab Sample No.	1 1 1 1 1 1 3	2000 PER	Silica gel clean-up Hold	Remarks
EB-1-15 5/14 LB-1-30 5/14					
CB-8-30 S/14					
FRS-20 414	Î Î		XX X X		
EB-9-15 5/14	X X		XX XX		
13.9-50 July 68-1-50 S/14					
FB-4-5 5/14					
Relinquished by: (Signature) / Relinquished by: (Signature)	Date Date	Time 1215	Received by: (Signature) Received by: (Signature)	Date	Time , 2 · 3 √
Relinquished by: (Signature)		Time	Received by Lab: (Signature)	Date	Time
Sent to Laboratory (Name): 1// > Laboratory Comments/Notes:	and table	abil		courier Fed Ex inter (Co. Name)	Airborne UPS
11000	on Outstand N. H.		1 / \	00011	. 004456